Climate Crisis Impact on AIDS, IRIS and Neuro-AIDS

  • Francesco Chiappelli
  • Emma Reyes
  • Ruth Toruño


Our awareness of the climate crisis/catastrophe is a convoluted story, which began in chemistry laboratories several decades ago. In that context, scientists first described the greenhouse effect: the potential CO2 accumulation allows solar heat to penetrate the atmosphere, but prevents radiated warmth to escape from it. A theoretical proposition at first, scientists first described the greenhouse effect as the potential accumulation of CO2, allowing solar heat to penetrate the atmosphere while simultaneously preventing the radiated warmth from escaping it. This increase in atmospheric CO2 would hypothetically then raise the planet’s temperature, and if left unchecked, this phenomenon could lead to a multitude of issues including the melting of polar ice caps, rising of oceanic waters, alterations in the acidity and temperature of global water reservoirs (i.e., rivers, lakes, and seas), and changes in the patterns and strength of the gulf streams and consequently the jet stream.

Global warming is now a reality that is substantiated by an abundance of facts and evidence. The best available evidence further confirms that the climate crisis we have engendered with wanton human activity since the industrial revolution and with renewed vigor following WWII, has exacerbated within the last five decades, proffering serious threats to the health of children, adults and the elderly alike.

We discuss the implications of the climate crisis to susceptibility of HIV disease, AIDS, Neuro-AIDS and IRIS, and proffer the current measles outbreak in the Philippines as proof-of-concept of the proposition that global warming can affect morbidity and mortality to viral infections. We also propose a general Artificial Intelligence-driven statistical space-time mixture algorithm as a Bayesian predictive model for climate change-associated medical emergencies.


Human Immunodeficiency virus (HIV) Acquired immune deficiency syndrome (AIDS) Neuro-AIDS Immune reconstitution inflammatory syndrome (IRIS) Macroenvironment Microenvironment Best evidence base Systematic review Translational Environmental Restoration (TER) Climate crisis Artificial Intelligence (AI) Bayesian semi-parametric multiple regression Space-time model 


  1. 1.
    Resplandy L, Keeling RF, Eddebbar Y, Brooks MK, Wang R, Bopp L, Long MC, Dunne JP, Koeve W, Oschlies A. Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition. Nature. 2018;563:105–8. On Line Pub. 31 October 2018 [PMID: 30382201].PubMedCrossRefGoogle Scholar
  2. 2.
    Chiappelli F. Bioinformation Informs the Allostasiome: Translational Environmental Restoration (TER) for the Climate Crisis Medical Emergency. Bioinformation. 2018;14:446–8. [PMID:30310252].PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    IPCC-2018. Global Warming ff 1.5 °C. 48th Session of the IPCC, Incheon, Republic of Korea, 6 October 2018. Accessed 1 Nov 2018.
  4. 4.
    Khakshooy A, Chiappelli F. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome. Bioinformation. 2016;12:28–31. [PMID: 27212842].PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Dybul M, Fauci AS, Bartlett JG, Kaplan JE, Pau AK. Guidelines for using antiretroviral agents among HIV-infected adults and adolescents. Ann Intern Med. 2002;137:381–433. [PMID: 12617573].PubMedCrossRefGoogle Scholar
  6. 6.
    Espinosa E, Ormsby CE, Vega-Barrientos RS, Ruiz-Cruz M, Moreno-Coutiño G, Peña-Jiménez A, Peralta-Prado AB, Cantoral-Díaz M, Romero-Rodríguez DP, Reyes-Terán G. Risk factors for immune reconstitution inflammatory syndrome under combination antiretroviral therapy can be aetiology-specific. Int J STD AIDS. 2010;21:573–9. [PMID: 20975091].PubMedCrossRefGoogle Scholar
  7. 7.
    Chiappelli F, Shapshak P, Commins D, Singer E, Minagar A, Oluwadara O, Prolo P, Pellionisz AJ. Molecular epigenetics, chromatin, and NeuroAIDS/HIV: immunopathological implications. Bioinformation. 2008;3:47–52. [PMID:19052666].PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chiappelli F, Balenton N, Khakshooy A. Future Innovations in Viral Immune Surveillance: A Novel Place for Bioinformation and Artificial Intelligence in the Administration of Health Care. Bioinformation. 2018;14(5):201–5. [PMID:30108416].PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Solomon GF. Psychoneuroimmunology: interactions between central nervous system and immune system. J Neurosci Res. 1987;18:1–9. [PMID: 3316677].PubMedCrossRefGoogle Scholar
  10. 10.
    Chiappelli F, Abanomy A, Hodgson D, Mazey KA, Messadi DV, Mito RS, Nishimura I, Spigleman I. Chapter 64, Clinical, experimental and translational psychoneuroimmunology research models in oral biology and medicine. In: Ader R, et al., editors. Psychoneuroimmunology, III. San Diego: Academic Press; 2001. p. 645–70.Google Scholar
  11. 11.
    Kim J. Regulation of Immune Cell Functions by Metabolic Reprogramming. J Immunol Res. 2018;. On Line Pub. 13 Feb 2018: 8605471. [PMID: 29651445].Google Scholar
  12. 12.
    Neurological Complications of AIDS Fact Sheet: National Institute of Neurological Disorders and Stroke. Accessed 3 Oct 2018.
  13. 13.
    Brandsma D, Bromberg JEC. Primary CNS lymphoma in HIV infection. Handb Clin Neurol. 2018;152:177–86. [PMID:29604975].PubMedCrossRefGoogle Scholar
  14. 14.
    Grønborg HL, Jespersen S, Hønge BL, Jensen-Fangel S, Wejse C. Review of cytomegalovirus coinfection in HIV-infected individuals in Africa. Rev Med Virol. 2017. On Line Pub. 7 Oct. 2016. [PMID: 27714898].
  15. 15.
    Hung CH, Chang KH, Kuo HC, Huang CC, Liao MF, Tsai YT, Ro LS. Features of varicella zoster virus myelitis and dependence on immune status. J Neurol Sci. 2012;318:19–24. [PMID: 22564884].PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Limper AH, Adenis A, Le T, Harrison TS. Fungal infections in HIV/AIDS. Lancet Infect Dis. 2017;17:e334–43. [PMID: 2877e4701].PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Chiappelli F, Bakhordarian A, Thames A, Du AM, Jan AL, Nahcivan M, Nguyen MT, Sama N, Manfrini E, Piva F, Rocha RM, Maida CA. Ebola: translational science considerations. Translational Med. 2015;13:11. [PMID:25592846].CrossRefGoogle Scholar
  18. 18.
    Chiappelli F, Santos SM, Caldeira Brant XM, Bakhordarian A, Thames AD, Maida CA, Du AM, Jan AL, Nahcivan M, Nguyen MT, Sama N. Viral immune evasion in dengue: toward evidence-based revisions of clinical practice guidelines. Bioinformation. 2014;10:726–33. [PMID:25670874].PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chiappelli F. Fundamentals of Evidence-based Health Care and Translational Science. Heidelberg: Springer–Verlag; 2014.CrossRefGoogle Scholar
  20. 20.
    Chiappelli F. Comparative Effectiveness Research (CER): New Methods, Challenges and Health Implications. Hauppauge: NovaScience Publisher, Inc.; 2016.Google Scholar
  21. 21.
    Chiappelli F. Advances in Psychophysiology Research. Hauppauge: NovaScience Publisher, Inc.; 2018.Google Scholar
  22. 22.
    Sulpis O, Boudreau BP, Mucci A, Jenkins C, Trossman DS, Arbic BK, Key RM. Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2. Proc Natl Acad Sci USA. 115:11700–5. On Line Pub. 29 Oct. 2018 [PMID:30373837].CrossRefGoogle Scholar
  23. 23.
    National Ocean Service. What is Coral bleaching? 25 June 2018. Accessed 13 Nov 2018.
  24. 24.
    Levins R, Richard Lewontin R. The Dialectical Biologist. Cambridge, MA: Harvard University Press; 1985.Google Scholar
  25. 25.
    National Institute of Neurological Disorders and Stroke Neurological Complications of AIDS Fact Sheet. Report 10/3/2018. Accessed 12 Nov 2018.
  26. 26.
    Nogueira M, Da Silva Marinho RV, Harumi Narumiya I, Bach Q, Kasar V, Khorshad D, Chiappelli F. Chapter 20, Comparative Effectiveness Research in the Pharmacological Treatment of HIV/AIDS – The Immune Reconstitution Inflammatory Syndrome (IRIS). In: Chiappelli F, editor. Comparative Effectiveness Research (CER): New Methods, Challenges and Health Implications. Hauppauge: NovaScience Publisher, Inc.; 2016.Google Scholar
  27. 27.
    Schooley RT. Our Warming Planet: Is the HIV-1-Infected Population in the Crosshairs. Top Antivir Med. 2016;26:67–70. [PMID:29906791].PubMedGoogle Scholar
  28. 28.
    McDonald J, Harkin J, Harwood A, Hobday A, Lyth A, Meinke H. Supporting evidence-based adaptation decision-making in Tasmania: A synthesis of climate change adaptation research. Gold Coast: National Climate Change Adaptation Research Facility; 2013. p. 169.Google Scholar
  29. 29.
    Smith DL, Dushoff J, McKenzie FE. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol. 2004;2:e368. OnLine Pub. 26 Oct. 2004 [PMID:15510228].PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    McMichael A. Climate Change and the Health of Nations: Famines, Fevers, and the Fate of Populations. 1st ed. New York, NY: Oxford University Press; 2017.Google Scholar
  31. 31.
    World Health Organization. Ambient (outdoor) air quality and health. 2 May 2018. Accessed 13 Nov 2018.
  32. 32.
    Schooley RT. The human microbiome: implications for health and disease, including HIV infection. Top Antivir Med. 2018;26:75–8. [PMID:30384329].PubMedPubMedCentralGoogle Scholar
  33. 33.
    Liang L, Gong P. Climate change and human infectious diseases: A synthesis of research findings from global and spatio-temporal perspectives. Ann Rev Virol. 2016;3(1):125–45. [PMID:27482902].CrossRefGoogle Scholar
  34. 34.
    Chowdhury FR, Nur Z, Hassan N, von Seidlein L, Dunachie S. Pandemics, pathogenicity and changing molecular epidemiology of cholera in the era of global warming. Ann Clin Microbiol Antimicrob. 2017;16(1):10. [PMID:28270154].PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P, Paxinos EE, Yamaichi Y, Calderwood SB, Mekalanos JJ, Schadt EE, Waldor MK. The origin of the Haitian cholera outbreak strain. N Engl J Med. 2011;364(1):33–42. [PMID:21142692].PubMedCrossRefGoogle Scholar
  36. 36.
    McMichael AJ, Woodruff RE, Hales S. Climate change and human health: present and future risks. Lancet. 2006;367(9513):859–69. [PMID:16530580].PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Booth S, Zeller D. Mercury, Food Webs, and Marine Mammals: Implications of Diet and Climate Change for Human Health. Environ Health Perspect. 2005;113(5):521–6. [PMID:15866757].PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Beggs PJ. Impacts of climate change on aeroallergens: past and future. Clinical and experimental allergy. 2004(10):1507–13. [PMID:15479264].Google Scholar
  39. 39.
    Bajin M, Cingi C, Oghan F, Gurbuz M. Global warming and allergy in Asia Minor. Eur Arch Otorhinolaryngol. 2013;270(1):27–31. [PMID:22695877].PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kaffenberger B, Shetlar D, Norton S, Rosenbach M. The effect of climate change on skin disease in North America. J Am Acad Dermatol. 2017;76(1):140–7. [PMID:27742170].PubMedCrossRefGoogle Scholar
  41. 41.
    Shuman EK. Global climate change and infectious diseases. Int J Occup Environ Med. 2011;2(1):11–9. [PMID:23022814].PubMedGoogle Scholar
  42. 42.
    Abayomi A, Cowan MN. The HIV/AIDS epidemic in South Africa: Convergence with tuberculosis, socioecological vulnerability, and climate change patterns. S Afr Med J. 2014;104(8):583. [PMID:26307805].PubMedCrossRefGoogle Scholar
  43. 43.
    Cohen J. Reversal of misfortunes. Science. 2013;339(6122):898–903. [PMID:23430629].PubMedCrossRefGoogle Scholar
  44. 44.
    Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287(9):1132–41. [PMID:11879110].PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Abayomi A. HIV/AIDS disease burden complex in South Africa: Impact on health and environmental resources, and vulnerability to climate. Climate Vulnerability. 2013;1:125–43.CrossRefGoogle Scholar
  46. 46.
    Akil L, Ahmad H, Reddy R. Effects of climate change on Salmonella infections. Foodborne Pathog Dis. 2014;11(12):974–80. [PMID:25496072].PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Checkley W, Epstein LD, Gilman RH, Figueroa D, Cama RI, Patz JA, Black RE. Effect of El Niño and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet. 2000;355(9202):442–50. [PMID:10841124].PubMedCrossRefGoogle Scholar
  48. 48.
    Gilbert M, Slingenbergh J, Xiao X. Climate change and avian influenza. Rev Sci Tech. 2008;27(2):459–66. [PMID:18819672].PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Longstreth J. Anticipated public health consequences of global climate change. Environ Health Perspect. 1991;96:139–44. [PMID:1820256].PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Palmgren H. Meningococcal disease and climate. Glob Health Action. 2009;2 [PMID:20052424].CrossRefGoogle Scholar
  51. 51.
    Semenza JC, Herbst S, Rechenburg A, Suk JE, Höser C, Schreiber C, Kistemann T. Climate Change Impact Assessment of Food- and Waterborne Diseases. Crit Rev Environ Sci Technol. 2011;42(8):857–90. [PMID:24808720].PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    McMichael AJ, Lindgren E. Climate change: present and future risks to health, and necessary responses. J Intern Med. 2011;270(5):401–13. [PMID:21682780].PubMedCrossRefGoogle Scholar
  53. 53.
    Delfino RJ, Brummel S, Wu J, Stern H, Ostro B, Lipsett M, Winer A, Street DH, Zhang L, Tjoa T, Gillen DL. The relationship of respiratory and cardiovascular hospital admissions to the Southern California wildfires of 2003. Occup Environ Med. 2009;66(3):189–97. [PMID:19017694].PubMedCrossRefGoogle Scholar
  54. 54.
    Benedict K, Park BJ. Invasive fungal infections after natural disasters. Emerg Infect Dis. 2014;0(3):349–55. [PMID:24565446].CrossRefGoogle Scholar
  55. 55.
    Fritze J, Blashki G, Burke S, Wiseman J. Hope, despair and transformation: Climate change and the promotion of mental health and wellbeing. Int J Ment Health Syst. 2008;2(1):13. [PMID:18799005].CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Burke S, Sanson A, Van Hoorn J. The Psychological Effects of Climate Change on Children. Curr Psychiatry Rep. 2018;20(5):35. [PMID:29637319].CrossRefPubMedGoogle Scholar
  57. 57.
    Rifkin D, Long M, Perry M. Climate change and sleep: A systematic review of the literature and conceptual framework. Sleep Med Rev. 2018;42:3–9. [PMID:30177247].PubMedCrossRefGoogle Scholar
  58. 58.
    Gislason M. Climate change, health and infectious disease. Virulence. 2015;6(6):539–42. [PMID:26132053].PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hayes K, Blashki G, Wiseman J, Burke S, Reifels L. Climate change and mental health: risks, impacts and priority actions. Int J Ment Health Syst. 2018;12:28. [PMID:29881451].CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Moore FC, Obradovich N, Lehner F, Baylis P. Rapidly declining remarkability of temperature anomalies may obscure public perception of climate change. Proc Natl Acad Sci USA. 2019;116:4905–10.. 2019 Epub Feb 25. [PMID:30804179].PubMedCrossRefGoogle Scholar
  61. 61.
    Lawson AB, Choi J, Cai B, Hossain M, Kirby RS, Liu J. Bayesian 2-Stage Space-Time Mixture Modeling with Spatial Misalignment of the Exposure in Small Area Health Data. J Agric Biol Environ Stat. 2012;17:417–41. [PMID: 28943751].PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lawson AB, Song HR, Cai B, Hossain MM, Huang K. Space-time latent component modeling of geo-referenced health data. Stat Med. 2010;29:2012–27. [PMID: 20683893].PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesco Chiappelli
    • 1
  • Emma Reyes
    • 1
  • Ruth Toruño
    • 1
  1. 1.Department of the Health Sciences (Biostatistics)California State UniversityNorthridgeUSA

Personalised recommendations