Innovative Technologies for Advancement of WHO Risk Group 4 Pathogens Research

  • James Logue
  • Jeffrey Solomon
  • Brian F. Niemeyer
  • Kambez H. Benam
  • Aaron E. Lin
  • Zach Bjornson
  • Sizun Jiang
  • David R. McIlwain
  • Garry P. Nolan
  • Gustavo Palacios
  • Jens H. KuhnEmail author


Risk Group 4 pathogens are a group of often lethal human viruses for which there are no widely available vaccines or therapeutics. These viruses are endemic to specific geographic locations and typically cause relatively infrequent, self-limiting, but often devastating human disease outbreaks (e.g. Ebola virus, Kyasanur Forest disease virus, Lassa virus). The overall rarity of disease outbreaks with the associated lack of clinical data and the requirement for research on Risk Group 4 pathogens to be performed in maximum (biosafety level 4) containment necessarily impede progress in medical countermeasure development. Next-generation technologies may aid to bridge the current gaps of knowledge by increasing the amount of useful data that can be gleaned from individual diagnostic samples, possibly even at point-of-care; enable personalized medicine approaches through genomic virus characterization in the clinic; refine our comprehension of pathogenesis by using ex vivo technologies such as organs-on-chips or organoids; identify novel correlates of protection or disease survival that could inform novel medical countermeasure development; or support patient and treatment response monitoring through non-invasive techniques such as medical imaging. This chapter provides an overview of a subset of such technologies and how they may positively impact the field of Risk Group 4 pathogen research in the near future.


AI Artificial intelligence Biosafety level 4 BSL-4 CODEX CRISPR CyTOF In silico Medical imaging MIBI Next-generation sequencing Organoid Organs-on-chips Pathology Risk group 4 Single-cell sequencing Third generation sequencing Transparent animals 



We thank Laura Bollinger and Jiro Wada (both NIH/NIAID Integrated Research Facility at Fort Detrick, Frederick, MD, USA) for critically editing the manuscript and figure development, respectively. This work was supported in part through Battelle Memorial Institute’s prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272200700016I (J.L., J.H.K.) and with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. HHSN261200800001 (J.S.) and by the US FDA under Contract No. HHSF223201610018C (D.R.M., Z.B., S.J., G.P.N.). The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the views or official policies, either expressed or implied, of the US Department of the Army, the US Department of Defense, the US Department of Health and Human Services, or of the institutions and companies affiliated with the authors. Mention of trade names, commercial products or services, or organizations does not imply endorsement by the U.S. Government. In no event shall any of these entities have any responsibility or liability for any use, misuse, inability to use, or reliance upon the information contained herein.


  1. 1.
    World Health Organization. Laboratory biosafety manual. 3rd ed. Geneva: World Health Organization; 2004.Google Scholar
  2. 2.
    Rusek B, Sharples FE, Hottes AK. Biosecurity challenges of the global expansion of high-containment biological laboratories: summary of a workshop. Washington, DC: National Academies Press; 2011.Google Scholar
  3. 3.
    Bullard SG. A day-by-day chronicle of the 2013-2016 Ebola outbreak. Cham: Springer; 2018.CrossRefGoogle Scholar
  4. 4.
    Siddle KJ, Eromon P, Barnes KG, Mehta S, Oguzie JU, Odia I, et al. Genomic analysis of Lassa virus during an increase in cases in Nigeria in 2018. N Engl J Med. 2018;379(18):1745–53.PubMedCrossRefGoogle Scholar
  5. 5.
    Kafetzopoulou LE, Pullan ST, Lemey P, Suchard MA, Ehichioya DU, Pahlmann M, et al. Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science. 2019;363(6422):74–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Chakraborty S, Andrade FCD, Ghosh S, Uelmen J, Ruiz MO. Historical expansion of Kyasanur forest disease in India from 1957 to 2017: a retrospective analysis. GeoHealth. 2019;3(2):44–55.CrossRefGoogle Scholar
  7. 7.
    Borio L, Inglesby T, Peters CJ, Schmaljohn AL, Hughes JM, Jahrling PB, et al. Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA. 2002;287(18):2391–405.PubMedCrossRefGoogle Scholar
  8. 8.
    Leitenberg M, Zilinskas RA, Kuhn JH. The Soviet biological weapons program: a history. Cambridge: Harvard University Press; 2012.CrossRefGoogle Scholar
  9. 9.
    US Centers for Disease Control and Prevention. Bioterrorism agents/diseases. 2018.
  10. 10.
    US National Institute of Allergy and Infectious Diseases. NIAID emerging infectious diseases/pathogens. 2016.
  11. 11.
    Postnikova E, Cong Y, DeWald LE, Dyall J, Yu S, Hart BJ, et al. Testing therapeutics in cell-based assays: Factors that influence the apparent potency of drugs. PLoS One. 2018;13(3):e0194880.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bolken TC, Laquerre S, Zhang Y, Bailey TR, Pevear DC, Kickner SS, et al. Identification and characterization of potent small molecule inhibitor of hemorrhagic fever New World arenaviruses. Antiviral Res. 2006;69(2):86–97.PubMedCrossRefGoogle Scholar
  13. 13.
    Larson RA, Dai D, Hosack VT, Tan Y, Bolken TC, Hruby DE, et al. Identification of a broad-spectrum arenavirus entry inhibitor. J Virol. 2008;82(21):10768–75.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lee AM, Rojek JM, Spiropoulou CF, Gundersen AT, Jin W, Shaginian A, et al. Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J Biol Chem. 2008;283(27):18734–42.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Radoshitzky SR, Kuhn JH, de Kok-Mercado F, Jahrling PB, Bavari S. Drug discovery technologies and strategies for Machupo virus and other New World arenaviruses. Expert Opin Drug Discov. 2012;7(7):613–32.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lo MK, Shi P-Y, Chen Y-L, Flint M, Spiropoulou CF. In vitro antiviral activity of adenosine analog NITD008 against tick-borne flaviviruses. Antiviral Res. 2016;130:46–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Flint M, McMullan LK, Dodd KA, Bird BH, Khristova ML, Nichol ST, et al. Inhibitors of the tick-borne, hemorrhagic fever-associated flaviviruses. Antimicrob Agents Chemother. 2014;58(6):3206–16.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Focher F, Lossani A, Verri A, Spadari S, Maioli A, Gambino JJ, et al. Sensitivity of monkey B virus (Cercopithecine herpesvirus 1) to antiviral drugs: role of thymidine kinase in antiviral activities of substrate analogs and acyclonucleosides. Antimicrob Agents Chemother. 2007;51(6):2028–34.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Welch SR, Scholte FEM, Flint M, Chatterjee P, Nichol ST, Bergeron É, et al. Identification of 2’-deoxy-2’-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus. Antiviral Res. 2017;147:91–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Zivcec M, Metcalfe MG, Albariño CG, Guerrero LW, Pegan SD, Spiropoulou CF, et al. Assessment of inhibitors of pathogenic Crimean-Congo hemorrhagic fever virus strains using virus-like particles. PLoS Negl Trop Dis. 2015;9(12):e0004259.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hotard AL, He B, Nichol ST, Spiropoulou CF, Lo MK. 4’-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses with high potency. Antiviral Res. 2017;144:147–52.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Robinson JE, Hastie KM, Cross RW, Yenni RE, Elliott DH, Rouelle JA, et al. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat Commun. 2016;7:11544.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Saphire EO, Schendel SL, Fusco ML, Gangavarapu K, Gunn BM, Wec AZ, et al. Systematic analysis of monoclonal antibodies against Ebola virus GP defines features that contribute to protection. Cell. 2018;174(4):938–52 e13.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    de Wit E, Munster VJ. Animal models of disease shed light on Nipah virus pathogenesis and transmission. J Pathol. 2015;235(2):196–205.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mendoza EJ, Warner B, Safronetz D, Ranadheera C. Crimean-Congo haemorrhagic fever virus: past, present and future insights for animal modelling and medical countermeasures. Zoonoses Public Health. 2018;65(5):465–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Siragam V, Wong G, Qiu X-G. Animal models for filovirus infections. Zool Res. 2018;39(1):15–24.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Smith DR, Holbrook MR, Gowen BB. Animal models of viral hemorrhagic fever. Antiviral Res. 2014;112:59–79.PubMedCrossRefGoogle Scholar
  28. 28.
    Zivcec M, Safronetz D, Feldmann H. Animal models of tick-borne hemorrhagic fever viruses. Pathogens. 2013;2(2):402–21.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Blaine JW. Establishing a national biological laboratory safety and security monitoring program. Biosecur Bioterror. 2012;10(4):396–400.PubMedCrossRefGoogle Scholar
  30. 30.
    Shelby BD, Cartagena D, McClee V, Gangadharan D, Weyant R. Transfer of select agents and toxins: 2003–2013. Health Secur. 2015;13(4):256–66.PubMedCrossRefGoogle Scholar
  31. 31.
    Henkel RD, Miller T, Weyant RS. Monitoring select agent theft, loss and release reports in the United States—2004–2010. Appl Biosaf. 2012;17(4):171–80.CrossRefGoogle Scholar
  32. 32.
    US Department of Health and Human Services, US Centers for Disease Control and Prevention, US National Institutes of Health. Biosafety in microbiological and biomedical laboratories (BMBL). 5th ed. Washington, DC: HHS Publication No. (CDC) 93-8395, US Government Printing Office; 2009.Google Scholar
  33. 33.
    Bressler DS, Hawley RJ. Safety considerations in the biosafety level 4 maximum-containment laboratory. In: Wooley D, Byers K, editors. Biological safety: principles and practices. 5th ed. Washington, DC: American Society of Microbiology; 2017. p. 695–717.Google Scholar
  34. 34.
    Janosko K, Holbrook MR, Adams R, Barr J, Bollinger L, Newton JT, et al. Safety precautions and operating procedures in an (A)BSL-4 laboratory: 1. biosafety level 4 suit laboratory suite entry and exit procedures. J Vis Exp. 2016;116:e52317.Google Scholar
  35. 35.
    Mazur S, Holbrook MR, Burdette T, Joselyn N, Barr J, Pusl D, et al. Safety precautions and operating procedures in an (A)BSL-4 laboratory: 2. general practices. J Vis Exp. 2016;116:e53600.Google Scholar
  36. 36.
    Grove JN, Branco LM, Boisen ML, Muncy IJ, Henderson LA, Schieffellin JS, et al. Capacity building permitting comprehensive monitoring of a severe case of Lassa hemorrhagic fever in Sierra Leone with a positive outcome: case report. Virol J. 2011;8:314.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hunt L, Gupta-Wright A, Simms V, Tamba F, Knott V, Tamba K, et al. Clinical presentation, biochemical, and haematological parameters and their association with outcome in patients with Ebola virus disease: an observational cohort study. Lancet Infect Dis. 2015;15(11):1292–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Ruzek D, Avšič Županc T, Borde J, Chrdle A, Eyer L, Karganova G, et al. Tick-borne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 2019;164:23–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Weigler BJ. Biology of B virus in macaque and human hosts: a review. Clin Infect Dis. 1992;14(2):555–67.PubMedCrossRefGoogle Scholar
  40. 40.
    Mourya DT, Viswanathan R, Jadhav SK, Yadav PD, Basu A, Chadha MS. Retrospective analysis of clinical information in Crimean-Congo haemorrhagic fever patients: 2014–2015. India Indian J Med Res. 2017;145(5):673–8.PubMedGoogle Scholar
  41. 41.
    Goh KJ, Tan CT, Chew NK, Tan PS, Kamarulzaman A, Sarji SA, et al. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med. 2000;342(17):1229–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Chowell G, Kiskowski M. Modeling ring-vaccination strategies to control Ebola virus disease epidemics. In: Mathematical and statistical modeling for emerging and re-emerging infectious diseases. Basel: Springer International Publishing; 2016. p. 71–87.CrossRefGoogle Scholar
  43. 43.
    Kennedy SB, Bolay F, Kieh M, Grandits G, Badio M, Ballou R, et al. Phase 2 placebo-controlled trial of two vaccines to prevent Ebola in Liberia. N Engl J Med. 2017;377(15):1438–47.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Keith L, Chefer S, Bollinger L, Solomon J, Yellayi S, Seidel J, et al. Preclinical imaging in BSL-3 and BSL-4 environments: imaging pathophysiology of highly pathogenic infectious diseases. In: Pharmaco-imaging in drug and biologics development, AAPS advances in the pharmaceutical sciences series, vol 8. New York: Springer; 2014. p. 271–90.Google Scholar
  45. 45.
    Byrum R, Keith L, Bartos C, St Claire M, Lackemeyer MG, Holbrook MR, et al. Safety precautions and operating procedures in an (A)BSL-4 laboratory: 4. medical imaging procedures. J Vis Exp. 2016;116:e53601.Google Scholar
  46. 46.
    de Kok-Mercado F, Kutlak FM, Jahrling PB. The NIAID Integrated Research Facility at Fort Detrick. Appl Biosaf. 2011;16(2):58–66.CrossRefGoogle Scholar
  47. 47.
    Jahrling PB, Keith L, St Claire M, Johnson RF, Bollinger L, Lackemeyer MG, et al. The NIAID Integrated Research Facility at Frederick, Maryland: a unique international resource to facilitate medical countermeasure development for BSL-4 pathogens. Pathog Dis. 2014;71(2):213–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Banerjee I, Ling Y, Chen MC, Hasan SA, Langlotz CP, Moradzadeh N, et al. Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Artif Intell Med. 2019;97:79–88.PubMedCrossRefGoogle Scholar
  49. 49.
    Hussain Z, Gimenez F, Yi D, Rubin D. Differential data augmentation techniques for medical imaging classification tasks. AMIA Annu Symp Proc. 2017;2017:979–84.PubMedGoogle Scholar
  50. 50.
    Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ, editors. Advances in neural information processing systems 27 (NIPS 2014). Montréal: Palais des Congrès de Montréal; 2014. p. 2672–80.Google Scholar
  51. 51.
    Perera P, Patel VM. Learning deep features for one-class classification. arXiv. 2018:1801.05365.
  52. 52.
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv. 2015:1409.556.
  53. 53.
    Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention – MICCAI 2015. 9351: Springer, Cham; 2015. p. 234–41.Google Scholar
  54. 54.
    Eminian S, Hajdu SD, Meuli RA, Maeder P, Hagmann P. Rapid high resolution T1 mapping as a marker of brain development: normative ranges in key regions of interest. PLoS One. 2018;13(6):e0198250.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sarji SA, Abdullah BJJ, Goh KJ, Tan CT, Wong KT. MR imaging features of Nipah encephalitis. AJR Am J Roentgenol. 2000;175(2):437–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Lim CCT, Sitoh YY, Hui F, Lee KE, Ang BSP, Lim E, et al. Nipah viral encephalitis or Japanese encephalitis? MR findings in a new zoonotic disease. AJNR Am J Neuroradiol. 2000;21(3):455–61.PubMedGoogle Scholar
  57. 57.
    Cong Y, Lentz MR, Lara A, Alexander I, Bartos C, Bohannon JK, et al. Loss in lung volume and changes in the immune response demonstrate disease progression in African green monkeys infected by small-particle aerosol and intratracheal exposure to Nipah virus. PLoS Negl Trop Dis. 2017;11(4):e0005532.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Baseler L, Chertow DS, Johnson KM, Feldmann H, Morens DM. The pathogenesis of Ebola virus disease. Annu Rev Pathol. 2017;12:387–418.PubMedCrossRefGoogle Scholar
  59. 59.
    Solomon J, Douglas D, Johnson R, Hammoud D. New image analysis technique for quantitative longitudinal assessment of lung pathology on CT in infected rhesus macaques. In: 2014 IEEE 27th International symposium on computer-based medical systems. Piscataway: Institute of Electrical and Electronics Engineers (IEEE); 2014. p. 169–72.CrossRefGoogle Scholar
  60. 60.
    Harrison AP, Xu Z, George K, Lu L, Summers RM, Mollura DJ. Progressive and multi-path holistically nested neural networks for pathological lung segmentation from CT images. Med Image Comput Comput Assist Interv − MICCAI 2017 MICCAI 2017 Lect Notes in Comput Sci. 2017;10435:621–9.Google Scholar
  61. 61.
    Vaidyanathan S, Patel CN, Scarsbrook AF, Chowdhury FU. FDG PET/CT in infection and inflammation—current and emerging clinical applications. Clin Radiol. 2015;70(7):787–800.PubMedCrossRefGoogle Scholar
  62. 62.
    Shi KY, Li ZL, Yousefi B, Liu Z, Herz M, Huang SC, et al. Hierarchical dual-tracer modeling for rapid [18F] FLT and [18F] FDG PET scans on mice with lymphoma tumors. J Nucl Med. 2015;56(Suppl 3):374.Google Scholar
  63. 63.
    Niu G, Lang L, Kiesewetter DO, Ma Y, Sun Z, Guo N, et al. In vivo labeling of serum albumin for PET. J Nucl Med. 2014;55(7):1150–6.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sinharay S, Papadakis G, Tu T-W, Kovacs Z, Reid W, Frank J, et al. Imaging neuroinflammation using18F-DPA-714 PET after disrupting the blood brain barrier with pulsed focused ultrasound. J Nucl Med. 2017;58(Suppl 1):207.Google Scholar
  65. 65.
    Chefer S, Seidel J, Cockrell AS, Yount B, Solomon J, Hagen KR, et al. The human sodium iodide symporter as a reporter gene for studying Middle East respiratory syndrome coronavirus pathogenesis. mSphere. 2018;3(6):e00540–18.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zhang W, Hubbard A, Jones T, Racolta A, Bhaumik S, Cummins N, et al. Fully automated 5-plex fluorescent immunohistochemistry with tyramide signal amplification and same species antibodies. Lab Invest. 2017;97(7):873–85.PubMedCrossRefGoogle Scholar
  67. 67.
    Lin J-R, Fallahi-Sichani M, Sorger PK. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat Commun. 2015;6:8390.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Schubert W, Bonnekoh B, Pommer AJ, Philipsen L, Böckelmann R, Malykh Y, et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol. 2006;24(10):1270–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Gannot G, Tangrea MA, Erickson HS, Pinto PA, Hewitt SM, Chuaqui RF, et al. Layered peptide array for multiplex immunohistochemistry. J Mol Diagn. 2007;9(3):297–304.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vazquez G, et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell. 2018;174(4):968–81 e15.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, et al. Multiplexed ion beam imaging of human breast tumors. Nat Med. 2014;20(4):436–42.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell. 2018;174(6):1373–87 e19.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11(4):417–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci U S A. 2012;109(52):21301–6.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Beliveau BJ, Kishi JY, Nir G, Sasaki HM, Saka SK, Nguyen SC, et al. OligoMiner provides a rapid, flexible environment for the design of genome-scale oligonucleotide in situ hybridization probes. Proc Natl Acad Sci U S A. 2018;115(10):E2183–E92.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Deleage C, Wietgrefe SW, Del Prete G, Morcock DR, Hao XP, Piatak M Jr, et al. Defining HIV and SIV reservoirs in lymphoid tissues. Pathog Immun. 2016;1(1):68–106.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Frei AP, Bava F-A, Zunder ER, Hsieh EWY, Chen S-Y, Nolan GP, et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat Methods. 2016;13(3):269–75.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Kishi JY, Lapan SW, Beliveau BJ, West ER, Zhu A, Sasaki HM, Saka SK, Wang Y, Cepko CL, Yin P (2019) SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nature Methods 16 (6):533–544. Scholar
  79. 79.
    Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods. 2008;5(10):877–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rouhanifard SH, Mellis IA, Dunagin M, Bayatpour S, Jiang CL, Dardani I, et al. ClampFISH detects individual nucleic acid molecules using click chemistry-based amplification. Nat Biotechnol. 2019;37(1):84.CrossRefGoogle Scholar
  81. 81.
    Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zeng X, Blancett CD, Koistinen KA, Schellhase CW, Bearss JJ, Radoshitzky SR, et al. Identification and pathological characterization of persistent asymptomatic Ebola virus infection in rhesus monkeys. Nat Microbiol. 2017;2:17113.PubMedCrossRefGoogle Scholar
  83. 83.
    Coffin KM, Liu J, Warren TK, Blancett CD, Kuehl KA, Nichols DK, et al. Persistent Marburg virus infection in the testes of nonhuman primate survivors. Cell Host Microbe. 2018;24(3):405–16.e3.PubMedCrossRefGoogle Scholar
  84. 84.
    Winer BY, Shirvani-Dastgerdi E, Bram Y, Sellau J, Low BE, Johnson H, et al. Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med. 2018;10(447):eaap9328.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Tuchin VV, Tuchin V. Light scattering methods and instruments for medical diagnosis. Bellingham: SPIE Press; 2007.Google Scholar
  86. 86.
    Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen C-K, Lubeck E, et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 2014;158(4):945–58.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Tainaka K, Kubota SI, Suyama TQ, Susaki EA, Perrin D, Ukai-Tadenuma M, et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell. 2014;159(4):911–24.PubMedCrossRefGoogle Scholar
  88. 88.
    Jing D, Zhang S, Luo W, Gao X, Men Y, Ma C, et al. Tissue clearing of both hard and soft tissue organs with the PEGASOS method. Cell Res. 2018;28(8):803–18.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Pan C, Cai R, Quacquarelli FP, Ghasemigharagoz A, Lourbopoulos A, Matryba P, et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods. 2016;13(10):859–67.PubMedCrossRefGoogle Scholar
  90. 90.
    Kubota SI, Takahashi K, Nishida J, Morishita Y, Ehata S, Tainaka K, et al. Whole-body profiling of cancer metastasis with single-cell resolution. Cell Rep. 2017;20(1):236–50.PubMedCrossRefGoogle Scholar
  91. 91.
    Cai R, Pan C, Ghasemigharagoz A, Todorov MI, Förstera B, Zhao S, et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat Neurosci. 2019;22(2):317–27.PubMedCrossRefGoogle Scholar
  92. 92.
    Pan C, Schoppe O, Parra-Damas A, Cai R, Todorov MI, Gondi G, et al. Deep learning reveals cancer metastasis and therapeutic antibody targeting in whole body. bioRxiv. 2019:541862.
  93. 93.
    Lo MK, Nichol ST, Spiropoulou CF. Evaluation of luciferase and GFP-expressing Nipah viruses for rapid quantitative antiviral screening. Antiviral Res. 2014;106:53–60.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Caì Y, Iwasaki M, Beitzel BF, Yú S, Postnikova EN, Cubitt B, et al. Recombinant Lassa virus expressing green fluorescent protein as a tool for high-throughput drug screens and neutralizing antibody assays. Viruses. 2018;10(11):655.PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    Welch SR, Guerrero LW, Chakrabarti AK, McMullan LK, Flint M, Bluemling GR, et al. Lassa and Ebola virus inhibitors identified using minigenome and recombinant virus reporter systems. Antiviral Res. 2016;136:9–18.PubMedCrossRefGoogle Scholar
  96. 96.
    Liu DX, Perry DL, Evans DeWald L, Cai Y, Hagen KR, Cooper TK, et al. Persistence of Lassa virus associated with severe systemic arteritis in convalescing guinea pigs (Cavia porcellus). J Infect Dis. 2019;219(11):1818–22.PubMedGoogle Scholar
  97. 97.
    Panchal RG, Kota KP, Spurgers KB, Ruthel G, Tran JP, Boltz RC, et al. Development of high-content imaging assays for lethal viral pathogens. J Biomol Screen. 2010;15(7):755–65.PubMedCrossRefGoogle Scholar
  98. 98.
    Thangamani S, Hermance ME, Santos RI, Slovak M, Heinze D, Widen SG, et al. Transcriptional immunoprofiling at the tick-virus-host interface during early stages of tick-borne encephalitis virus transmission. Front Cell Infect Microbiol. 2017;7:494.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Oestereich L, Rieger T, Neumann M, Bernreuther C, Lehmann M, Krasemann S, et al. Evaluation of antiviral efficacy of ribavirin, arbidol, and T-705 (favipiravir) in a mouse model for Crimean-Congo hemorrhagic fever. PLoS Negl Trop Dis. 2014;8(5):e2804.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Baseler L, de Wit E, Scott DP, Munster VJ, Feldmann H. Syrian hamsters (Mesocricetus auratus) oronasally inoculated with a Nipah virus isolate from Bangladesh or Malaysia develop similar respiratory tract lesions. Vet Pathol. 2015;52(1):38–45.PubMedCrossRefGoogle Scholar
  101. 101.
    Bjornson ZB, Nolan GP, Fantl WJ. Single-cell mass cytometry for analysis of immune system functional states. Curr Opin Immunol. 2013;25(4):484–94.PubMedCrossRefGoogle Scholar
  102. 102.
    Reeves PM, Sluder AE, Paul SR, Scholzen A, Kashiwagi S, Poznansky MC. Application and utility of mass cytometry in vaccine development. FASEB J. 2018;32(1):5–15.PubMedCrossRefGoogle Scholar
  103. 103.
    Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. A deep profiler’s guide to cytometry. Trends Immunol. 2012;33(7):323–32.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Bekele Y, Lakshmikanth T, Chen Y, Mikes J, Nasi A, Petkov S, et al. Mass cytometry identifies distinct CD4+ T cell clusters distinguishing HIV-1-infected patients according to antiretroviral therapy initiation. JCI Insight. 2019;4(3):e125442.PubMedCentralCrossRefPubMedGoogle Scholar
  105. 105.
    Coindre S, Tchitchek N, Alaoui L, Vaslin B, Bourgeois C, Goujard C, et al. Mass cytometry analysis reveals the landscape and dynamics of CD32a+ CD4+ T cells from early HIV infection to effective cART. Front Immunol. 2018;9(1217):1217.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Gossez M, Rimmelé T, Andrieu T, Debord S, Bayle F, Malcus C, et al. Proof of concept study of mass cytometry in septic shock patients reveals novel immune alterations. Sci Rep. 2018;8(1):17296.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hamlin RE, Rahman A, Pak TR, Maringer K, Mena I, Bernal-Rubio D, et al. High-dimensional CyTOF analysis of dengue virus-infected human DCs reveals distinct viral signatures. JCI Insight. 2017;2(13):e92424.PubMedCentralCrossRefPubMedGoogle Scholar
  108. 108.
    Bjornson-Hooper ZB, Fragiadakis GK, Spitzer MH, Madhireddy D, Hu K, Lundsten K, et al. Cell type-specific monoclonal antibody cross-reactivity screening in non-human primates and development of comparative immunophenotyping panels for CyTOF. bioRxiv. 2019:577759.
  109. 109.
    Bjornson-Hooper ZB, Fragiadakis GK, Spitzer MH, Madhireddy D, McIlwain D, Nolan GP. A comprehensive atlas of immunological differences between humans, mice and non-human primates. bioRxiv. 2019:574160.
  110. 110.
    Kimball AK, Oko LM, Bullock BL, Nemenoff RA, van Dyk LF, Clambey ET. A beginner’s guide to analyzing and visualizing mass cytometry data. J Immunol. 2018;200(1):3–22.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VRT, Schulz D, et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat Methods. 2017;14(9):873–6.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.CrossRefGoogle Scholar
  113. 113.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11(1):31–46.CrossRefGoogle Scholar
  115. 115.
    Levy SE, Myers RM. Advancements in next-generation sequencing. Annu Rev Genomics Hum Genet. 2016;17:95–115.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, et al. DNA sequencing at 40: past, present and future. Nature. 2017;550(7676):345–53.PubMedCrossRefGoogle Scholar
  117. 117.
    Houldcroft CJ, Beale MA, Breuer J. Clinical and biological insights from viral genome sequencing. Nat Rev Microbiol. 2017;15(3):183–92.PubMedCrossRefGoogle Scholar
  118. 118.
    Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Pathol. 2019;14:319–38.PubMedCrossRefGoogle Scholar
  119. 119.
    Worobey M, Watts TD, McKay RA, Suchard MA, Granade T, Teuwen DE, et al. 1970s and ‘patient 0’ HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature. 2016;539(7627):98–101.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature. 2016;530(7589):228–32.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc. 2017;12(6):1261–76.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Matranga CB, Andersen KG, Winnicki S, Busby M, Gladden AD, Tewhey R, et al. Enhanced methods for unbiased deep sequencing of Lassa and Ebola RNA viruses from clinical and biological samples. Genome Biol. 2014;15(11):519.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Metsky HC, Siddle KJ, Gladden-Young A, Qu J, Yang DK, Brehio P, et al. Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nat Biotechnol. 2019;37(2):160–8.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Quan J, Langelier C, Kuchta A, Batson J, Teyssier N, Lyden A, Caldera S, McGeever A, Dimitrov B, King R, Wilheim J, Murphy M, Ares LP, Travisano KA, Sit R, Amato R, Mumbengegwi DR, Smith JL, Bennett A, Gosling R, Mourani PM, Calfee CS, Neff NF, Chow ED, Kim PS, Greenhouse B, DeRisi JL, Crawford ED (2019) FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res 47 (14):e83-e83. Scholar
  125. 125.
    Gu W, Crawford ED, O’Donovan BD, Wilson MR, Chow ED, Retallack H, et al. Depletion of abundant sequences by hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol. 2016;17:41.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Gire SK, Goba A, Andersen KG, Sealfon RSG, Park DJ, Kanneh L, et al. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science. 2014;345(6202):1369–72.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Carroll MW, Matthews DA, Hiscox JA, Elmore MJ, Pollakis G, Rambaut A, et al. Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature. 2015;524(7563):97–101.PubMedCrossRefGoogle Scholar
  128. 128.
    Ladner JT, Wiley MR, Mate S, Dudas G, Prieto K, Lovett S, et al. Evolution and spread of Ebola virus in Liberia, 2014–2015. Cell Host Microbe. 2015;18(6):659–69.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Tong Y-G, Shi W-F, Liu D, Qian J, Liang L, Bo X-C, et al. Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone. Nature. 2015;524(7563):93–6.PubMedCrossRefGoogle Scholar
  130. 130.
    Park DJ, Dudas G, Wohl S, Goba A, Whitmer SLM, Andersen KG, et al. Ebola virus epidemiology, transmission, and evolution during seven months in Sierra Leone. Cell. 2015;161(7):1516–26.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Simon-Loriere E, Faye O, Faye O, Koivogui L, Magassouba N, Keita S, et al. Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic. Nature. 2015;524(7563):102–4.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Dudas G, Carvalho LM, Bedford T, Tatem AJ, Baele G, Faria NR, et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature. 2017;544(7650):309–15.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Mbala-Kingebeni P, Aziza A, Paola ND, Wiley MR, Makiala-Mandanda S, Caviness K, et al. Medical countermeasures during the 2018 Ebola virus disease outbreak in the North Kivu and Ituri Provinces of the Democratic Republic of the Congo: a rapid genomic assessment. Lancet Infect Dis. 2019;19(6):648–57.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Mbala-Kingebeni P, Pratt CB, Wiley MR, Diagne MM, Makiala-Mandanda S, Aziza A, et al. Near real-time genomic assessment of medical countermeasures under outbreak conditions: a case study for Ebola virus variant “Tumba” (Democratic Republic of the Congo, May-July 2018). Lancet Infect Dis. 2019;19(6):641–7.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Carroll MW, Haldenby S, Rickett NY, Pályi B, Garcia-Dorival I, Liu X, et al. Deep sequencing of RNA from blood and oral swab samples reveals the presence of nucleic acid from a number of pathogens in patients with acute Ebola virus disease and is consistent with bacterial translocation across the gut. mSphere. 2017;2(4):e00325–17.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Lauck M, Bailey AL, Andersen KG, Goldberg TL, Sabeti PC, O’Connor DH. GB virus C coinfections in west African Ebola patients. J Virol. 2015;89(4):2425–9.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Andersen KG, Shapiro BJ, Matranga CB, Sealfon R, Lin AE, Moses LM, et al. Clinical sequencing uncovers origins and evolution of Lassa virus. Cell. 2015;162(4):738–50.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Lau MSY, Dalziel BD, Funk S, McClelland A, Tiffany A, Riley S, et al. Spatial and temporal dynamics of superspreading events in the 2014–2015 West Africa Ebola epidemic. Proc Natl Acad Sci U S A. 2017;114(9):2337–42.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Mate SE, Kugelman JR, Nyenswah TG, Ladner JT, Wiley MR, Cordier-Lassalle T, et al. Molecular evidence of sexual transmission of Ebola virus. N Engl J Med. 2015;373(25):2448–54.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Diallo B, Sissoko D, Loman NJ, Bah HA, Bah H, Worrell MC, et al. Resurgence of Ebola virus disease in Guinea linked to a survivor with virus persistence in seminal fluid for more than 500 days. Clin Infect Dis. 2016;63(10):1353–6.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Arias A, Watson SJ, Asogun D, Tobin EA, Lu J, Phan MVT, et al. Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases. Virus Evol. 2016;2(1):vew016.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4(1):vey016.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Diehl WE, Lin AE, Grubaugh ND, Carvalho LM, Kim K, Kyawe PP, et al. Ebola virus glycoprotein with increased infectivity dominated the 2013–2016 epidemic. Cell. 2016;167(4):1088–98 e6.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Urbanowicz RA, McClure CP, Sakuntabhai A, Sall AA, Kobinger G, Müller MA, et al. Human adaptation of Ebola virus during the West African outbreak. Cell. 2016;167(4):1079–87 e5.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Li S, Mason CE. The pivotal regulatory landscape of RNA modifications. Annu Rev Genomics Hum Genet. 2014;15:127–50.PubMedCrossRefGoogle Scholar
  146. 146.
    Kennedy EM, Courtney DG, Tsai K, Cullen BR. Viral epitranscriptomics. J Virol. 2017;91(9):e02263–16.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Rausch JW, Sztuba-Solinska J, Le Grice SFJ. Probing the structures of viral RNA regulatory elements with SHAPE and related methodologies. Front Microbiol. 2017;8:2634.PubMedCrossRefGoogle Scholar
  148. 148.
    Gonzales-van Horn SR, Sarnow P. Making the mark: the role of adenosine modifications in the life cycle of RNA viruses. Cell Host Microbe. 2017;21(6):661–9.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
  150. 150.
    Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology. 2018;15(1):11.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Dirks RAM, Stunnenberg HG, Marks H. Genome-wide epigenomic profiling for biomarker discovery. Clin Epigenetics. 2016;8:122.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Li X, Xiong X, Yi C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods. 2016;14(1):23–31.PubMedCrossRefGoogle Scholar
  153. 153.
    Sztuba-Solinska J, Diaz L, Kumar MR, Kolb G, Wiley MR, Jozwick L, et al. A small stem-loop structure of the Ebola virus trailer is essential for replication and interacts with heat-shock protein A8. Nucleic Acids Res. 2016;44(20):9831–46.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Kutchko KM, Madden EA, Morrison C, Plante KS, Sanders W, Vincent HA, et al. Structural divergence creates new functional features in alphavirus genomes. Nucleic Acids Res. 2018;46(7):3657–70.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Kilianski A, Roth PA, Liem AT, Hill JM, Willis KL, Rossmaier RD, et al. Use of unamplified RNA/cDNA-hybrid nanopore sequencing for rapid detection and characterization of RNA viruses. Emerg Infect Dis. 2016;22(8):1448–51.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Keller MW, Rambo-Martin BL, Wilson MM, Ridenour CA, Shepard SS, Stark TJ, et al. Direct RNA sequencing of the coding complete influenza A virus genome. Sci Rep. 2018;8(1):14408.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Depledge DP, Srinivas KP, Sadaoka T, Bready D, Mori Y, Placantonakis DG, et al. Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat Commun. 2019;10(1):754.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Kheradpour P, Ernst J, Melnikov A, Rogov P, Wang L, Zhang X, et al. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res. 2013;23(5):800–11.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Mogno I, Kwasnieski JC, Cohen BA. Massively parallel synthetic promoter assays reveal the in vivo effects of binding site variants. Genome Res. 2013;23(11):1908–15.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Tewhey R, Kotliar D, Park DS, Liu B, Winnicki S, Reilly SK, et al. Direct identification of hundreds of expression-modulating variants using a multiplexed reporter assay. Cell. 2018;172(5):1132–4.PubMedCrossRefGoogle Scholar
  161. 161.
    Carette JE, Guimaraes CP, Wuethrich I, Blomen VA, Varadarajan M, Sun C, et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat Biotechnol. 2011;29(6):542–6.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA, Velds A, et al. Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science. 2013;340(6131):479–83.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Rato S, Golumbeanu M, Telenti A, Ciuffi A. Exploring viral infection using single-cell sequencing. Virus Res. 2017;239:55–68.PubMedCrossRefGoogle Scholar
  164. 164.
    Russell AB, Trapnell C, Bloom JD. Extreme heterogeneity of influenza virus infection in single cells. Elife. 2018;7:e32303.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Zanini F, Pu S-Y, Bekerman E, Einav S, Quake SR. Single-cell transcriptional dynamics of flavivirus infection. Elife. 2018;7:e32942.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Steuerman Y, Cohen M, Peshes-Yaloz N, Valadarsky L, Cohn O, David E, et al. Dissection of influenza infection in vivo by single-cell RNA sequencing. Cell Syst. 2018;6(6):679–91 e4.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Doğanay S, Lee MY, Baum A, Peh J, Hwang S-Y, Yoo J-Y, et al. Single-cell analysis of early antiviral gene expression reveals a determinant of stochastic IFNB1 expression. Integr Biol (Camb). 2017;9(11):857–67.CrossRefGoogle Scholar
  168. 168.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Dura B, Choi J-Y, Zhang K, Damsky W, Thakral D, Bosenberg M, et al. scFTD-seq: freeze-thaw lysis based, portable approach toward highly distributed single-cell 3’ mRNA profiling. Nucleic Acids Res. 2019;47(3):e16.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Yuan J, Sims PA. An automated microwell platform for large-scale single cell RNA-Seq. Sci Rep. 2016;6:33883.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Gierahn TM, Wadsworth MH 2nd, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 2017;14(4):395–8.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Ordovas-Montanes J, Dwyer DF, Nyquist SK, Buchheit KM, Vukovic M, Deb C, et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature. 2018;560(7720):649–54.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363(6434):1463–7.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V, et al. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 2012;40(Database issue):D593–8.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121–3.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Bradley P, den Bakker HC, Rocha EPC, McVean G, Iqbal Z. Ultrafast search of all deposited bacterial and viral genomic data. Nat Biotechnol. 2019;37(2):152–9.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Menegaux R, Vert JP. Continuous embeddings of DNA sequencing reads and application to metagenomics. J Comput Biol. 2019;26(6):509–18.PubMedCrossRefGoogle Scholar
  178. 178.
    Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12(8):733–5.PubMedCrossRefGoogle Scholar
  179. 179.
    Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36(4):338–45.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Westbrook CJ, Karl JA, Wiseman RW, Mate S, Koroleva G, Garcia K, et al. No assembly required: full-length MHC class I allele discovery by PacBio circular consensus sequencing. Hum Immunol. 2015;76(12):891–6.PubMedCrossRefGoogle Scholar
  181. 181.
    Dilernia DA, Chien J-T, Monaco DC, Brown MP, Ende Z, Deymier MJ, et al. Multiplexed highly-accurate DNA sequencing of closely-related HIV-1 variants using continuous long reads from single molecule, real-time sequencing. Nucleic Acids Res. 2015;43(20):e129.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Smith AM, Jain M, Mulroney L, Garalde DR, Akeson M. Reading canonical and modified nucleotides in 16S ribosomal RNA using nanopore direct RNA sequencing. bioRxiv. 2017:132274.
  183. 183.
    Cherf GM, Lieberman KR, Rashid H, Lam CE, Karplus K, Akeson M. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat Biotechnol. 2012;30(4):344–8.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Loose M, Malla S, Stout M. Real-time selective sequencing using nanopore technology. Nat Methods. 2016;13(9):751–4.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Kubota T, Lloyd K, Sakashita N, Minato S, Ishida K, Mitsui T. Clog and release, and reverse motions of a DNA in a nanopore. Polymers. 2019;11(1):84.PubMedCentralCrossRefPubMedGoogle Scholar
  186. 186.
    Dhillon RS, Kelly JD, Srikrishna D, Garry RF. Overlooking the importance of immunoassays. Lancet Infect Dis. 2016;16(10):1109–10.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P, et al. Paper-based synthetic gene networks. Cell. 2014;159(4):940–54.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Yen CW, de Puig H, Tam JO, Gomez-Marquez J, Bosch I, Hamad-Schifferli K, et al. Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip. 2015;15(7):1638–41.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018;360(6387):444–8.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 2015;16:114.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Naveca FG, Claro I, Giovanetti M, de Jesus JG, Xavier J, Iani FCM, et al. Genomic, epidemiological and digital surveillance of chikungunya virus in the Brazilian Amazon. PLoS Negl Trop Dis. 2019;13(3):e0007065.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Castro-Wallace SL, Chiu CY, John KK, Stahl SE, Rubins KH, McIntyre ABR, et al. Nanopore DNA sequencing and genome assembly on the International Space Station. Sci Rep. 2017;7(1):18022.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Coers J, Starnbach MN, Howard JC. Modeling infectious disease in mice: co-adaptation and the role of host-specific IFNγ responses. PLoS Pathog. 2009;5(5):e1000333.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Greek R, Menache A. Systematic reviews of animal models: methodology versus epistemology. Int J Med Sci. 2013;10(3):206–21.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    O’Donnell CD, Subbarao K. The contribution of animal models to the understanding of the host range and virulence of influenza A viruses. Microbes Infect. 2011;13(5):502–15.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Huh D, Hamilton GA, Ingber DE. From three-dimensional cell culture to organs-on-chips. Trends Cell Biol. 2011;21(12):745–54.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760–72.PubMedCrossRefGoogle Scholar
  198. 198.
    Huh DD. A human breathing lung-on-a-chip. Ann Am Thorac Soc. 2015;12(Suppl 1):S42–4.PubMedCrossRefGoogle Scholar
  199. 199.
    Niemeyer BF, Zhao P, Tuder RM, Benam KH. Advanced microengineered lung models for translational drug discovery. SLAS Discov. 2018;23(8):777–89.PubMedGoogle Scholar
  200. 200.
    Benam KH, Novak R, Nawroth J, Hirano-Kobayashi M, Ferrante TC, Choe Y, et al. Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst. 2016;3(5):456–66 e4.PubMedCrossRefGoogle Scholar
  201. 201.
    Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee H-H, et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods. 2016;13(2):151–7.PubMedCrossRefGoogle Scholar
  202. 202.
    Gori M, Simonelli MC, Giannitelli SM, Businaro L, Trombetta M, Rainer A. Investigating nonalcoholic fatty liver disease in a liver-on-a-chip microfluidic device. PLoS One. 2016;11(7):e0159729.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Lee J, Choi B, No DY, Lee G, Lee S-R, Oh H, et al. A 3D alcoholic liver disease model on a chip. Integr Biol (Camb). 2016;8(3):302–8.CrossRefGoogle Scholar
  204. 204.
    Ribas J, Sadeghi H, Manbachi A, Leijten J, Brinegar K, Zhang YS, et al. Cardiovascular organ-on-a-chip platforms for drug discovery and development. Appl In Vitro Toxicol. 2016;2(2):82–96.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer. 2019;19(2):65–81.PubMedCrossRefGoogle Scholar
  206. 206.
    Benam KH, Denney L, Ho L-P. How the respiratory epithelium senses and reacts to influenza virus. Am J Respir Cell Mol Biol. 2019;60(3):259–68.PubMedCrossRefGoogle Scholar
  207. 207.
    Benam KH, Ingber DE. Commendation for exposing key advantage of organ chip approach. Cell Syst. 2016;3(5):411.PubMedCrossRefGoogle Scholar
  208. 208.
    Benam KH, Königshoff M, Eickelberg O. Breaking the in vitro barrier in respiratory medicine. Engineered microphysiological systems for chronic obstructive pulmonary disease and beyond. Am J Respir Crit Care Med. 2018;197(7):869–75.PubMedCrossRefGoogle Scholar
  209. 209.
    Benam KH, Mazur M, Choe Y, Ferrante TC, Novak R, Ingber DE. Human lung small airway-on-a-chip protocol. Methods Mol Biol. 2017;1612:345–65.PubMedCrossRefGoogle Scholar
  210. 210.
    Benam KH, Vladar EK, Janssen WJ, Evans CM. Mucociliary defense: emerging cellular, molecular, and animal models. Ann Am Thorac Soc. 2018;15(Suppl 3):S210–S5.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Barkal LJ, Procknow CL, Álvarez-García YR, Niu M, Jiménez-Torres JA, Brockman-Schneider RA, et al. Microbial volatile communication in human organotypic lung models. Nat Commun. 2017;8(1):1770.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Ortega-Prieto AM, Skelton JK, Wai SN, Large E, Lussignol M, Vizcay-Barrena G, et al. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat Commun. 2018;9(1):682.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Johnson BN, Lancaster KZ, Hogue IB, Meng F, Kong YL, Enquist LW, et al. 3D printed nervous system on a chip. Lab Chip. 2016;16(8):1393–400.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Villenave R, Wales SQ, Hamkins-Indik T, Papafragkou E, Weaver JC, Ferrante TC, et al. Human gut-on-a-chip supports polarized infection of Coxsackie B1 virus in vitro. PLoS One. 2017;12(2):e0169412.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Mullard A. Parsing clinical success rates. Nat Rev Drug Discov. 2016;15(7):447.PubMedGoogle Scholar
  216. 216.
    Arrowsmith J, Miller P. Trial watch: phase II and phase III attrition rates 2011–2012. Nat Rev Drug Discov. 2013;12(8):569.PubMedCrossRefGoogle Scholar
  217. 217.
    Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017;22(5):456–72.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586–97.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345(6194):1247125.PubMedCrossRefGoogle Scholar
  220. 220.
    Xu H, Jiao Y, Qin S, Zhao W, Chu Q, Wu K. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp Hematol Oncol. 2018;7:30.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Zhou J, Li C, Sachs N, Chiu MC, Wong BH-Y, Chu H, et al. Differentiated human airway organoids to assess infectivity of emerging influenza virus. Proc Natl Acad Sci U S A. 2018;115(26):6822–7.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Watanabe M, Buth JE, Vishlaghi N, de la Torre-Ubieta L, Taxidis J, Khakh BS, et al. Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep. 2017;21(2):517–32.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Elazazy MS. Factorial design and machine learning strategies: impacts on pharmaceutical analysis. In: Sharmin E, Zafar F, editors. Spectroscopic analyses – developments and applications. London: IntechOpen; 2017. p. 443.Google Scholar
  224. 224.
    Vanhaelen Q, Mamoshina P, Aliper AM, Artemov A, Lezhnina K, Ozerov I, et al. Design of efficient computational workflows for in silico drug repurposing. Drug Discov Today. 2017;22(2):210–22.PubMedCrossRefGoogle Scholar
  225. 225.
    Centers for Disease Control and Prevention. Ebola virus NP real-time RT-PCR assay. 2016.
  226. 226.
    Cepheid. Xpert® Ebola assay – Instructions for use: for use under an Emergency Use Authorization (EUA) only. 2015.
  227. 227.
    Jensen KS, Adams R, Bennett RS, Bernbaum J, Jahrling PB, Holbrook MR. Development of a novel real-time polymerase chain reaction assay for the quantitative detection of Nipah virus replicative viral RNA. PLoS One. 2018;13(6):e0199534.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • James Logue
    • 1
    • 2
  • Jeffrey Solomon
    • 3
  • Brian F. Niemeyer
    • 4
  • Kambez H. Benam
    • 4
    • 5
  • Aaron E. Lin
    • 6
    • 7
    • 8
  • Zach Bjornson
    • 9
  • Sizun Jiang
    • 9
  • David R. McIlwain
    • 9
  • Garry P. Nolan
    • 9
  • Gustavo Palacios
    • 10
  • Jens H. Kuhn
    • 1
    • 2
    Email author
  1. 1.Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort DetrickFrederickUSA
  2. 2.Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR)National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)FrederickUSA
  3. 3.Integrated Research Facility at Fort Detrick, Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Fort DetrickFrederickUSA
  4. 4.Division of Pulmonary Sciences and Critical Care Medicine, Department of MedicineUniversity of Colorado, Anschutz Medical CampusAuroraUSA
  5. 5.Department of BioengineeringUniversity of Colorado DenverAuroraUSA
  6. 6.Harvard Program in Virology, Harvard Medical SchoolBostonUSA
  7. 7.FAS Center for Systems Biology, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  8. 8.Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeUSA
  9. 9.Baxter Laboratory for Stem Cell Biology, Department of Microbiology and ImmunologyStanford University School of MedicineStanfordUSA
  10. 10.United States Army Medical Research Institute of Infectious Diseases, Fort DetrickFrederickUSA

Personalised recommendations