Advertisement

Application of Support Vector Machines in Viral Biology

  • Sonal Modak
  • Swati Mehta
  • Deepak Sehgal
  • Jayaraman ValadiEmail author
Chapter

Abstract

Novel experimental and sequencing techniques have led to an exponential explosion and spiraling of data in viral genomics. To analyse such data, rapidly gain information, and transform this information to knowledge, interdisciplinary approaches involving several different types of expertise are necessary. Machine learning has been in the forefront of providing models with increasing accuracy due to development of newer paradigms with strong fundamental bases. Support Vector Machines (SVM) is one such robust tool, based rigorously on statistical learning theory. SVM provides very high quality and robust solutions to classification and regression problems. Several studies in virology employ high performance tools including SVM for identification of potentially important gene and protein functions. This is mainly due to the highly beneficial aspects of SVM. In this chapter we briefly provide lucid and easy to understand details of SVM algorithms along with applications in virology.

Keywords

Support vector machines Supervised learning Classification Regression function identification Epitope prediction Quantitative structure activity relationships Domain attributes Attribute selection viral biology 

References

  1. 1.
    Solomatine DP. Data-driven modelling: paradigm, methods, experiences. In: Proceedings of the 5th international conference on hydroinformatics; 2002 July 1. p. 1–5.Google Scholar
  2. 2.
    Mika S, Schölkopf B, Smola AJ, Müller KR, Scholz M, Rätsch G. Kernel PCA and de-noising in feature spaces. In: Advances in neural information processing systems; 1999. p. 536–542.Google Scholar
  3. 3.
    Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Netw. 1999;10(5):988–99.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other Kernel-based learning methods. Cambridge: Cambridge university press; 2000.CrossRefGoogle Scholar
  5. 5.
    Chou KC. Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr Proteomics. 2009;6(4):262–74.CrossRefGoogle Scholar
  6. 6.
    Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507–17.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ma S, Huang J. Penalized feature selection and classification in bioinformatics. Brief Bioinform. 2008;9(5):392–403.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Srivastava A, Ghosh S, Anantharaman N, Jayaraman VK. Hybrid biogeography based simultaneous feature selection and MHC class I peptide binding prediction using support vector machines and random forests. J Immunol Methods. 2013;387(1–2):284–92.PubMedCrossRefGoogle Scholar
  9. 9.
    Weston J, Watkins C. Support vector machines for multi-class pattern recognition. In: Esann 1999 April 21, vol 99. p. 219–224.Google Scholar
  10. 10.
    Suykens JA, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett. 1999;9(3):293–300.CrossRefGoogle Scholar
  11. 11.
    Tax DM, Duin RP. Support vector domain description. Pattern Recogn Lett. 1999;20(11–13):1191–9.CrossRefGoogle Scholar
  12. 12.
    Schölkopf B, Smola AJ, Williamson RC, Bartlett PL. New support vector algorithms. Neural computation. 2000 May 1;12(5):1207–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Dudek AZ, Arodz T, Gálvez J. Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen. 2006;9(3):213–28.PubMedCrossRefGoogle Scholar
  14. 14.
  15. 15.
    Qureshi A, Rajput A, Kaur G, Kumar M. HIVprotI: an integrated web based platform for prediction and design of HIV proteins inhibitors. J Chem. 2018;10(1):12.CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Hdoufane I, Bjij I, Soliman M, Tadjer A, Villemin D, Bogdanov J, Cherqaoui D. In silico SAR studies of HIV-1 inhibitors. Pharmaceuticals. 2018;11(3):69.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Mei J, Zhao J. Prediction of HIV-1 and HIV-2 proteins by using Chou’s pseudo amino acid compositions and different classifiers. Sci Rep. 2018;8(1):2359.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Richardson AM, Lidbury BA. Enhancement of hepatitis virus immunoassay outcome predictions in imbalanced routine pathology data by data balancing and feature selection before the application of support vector machines. BMC Med Inform Decis Mak. 2017;17(1):121.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Qasim MK, Algamal ZY, Ali HM. A binary QSAR model for classifying neuraminidase inhibitors of influenza A viruses (H1N1) using the combined minimum redundancy maximum relevancy criterion with the sparse support vector machine. SAR QSAR Environ Res. 2018;29(7):517–27.PubMedCrossRefGoogle Scholar
  21. 21.
    Huang CC, Chang CC, Chen CW, Ho SY, Chang HP, Chu YW. PClass: protein quaternary structure classification by using bootstrapping strategy as model selection. Genes. 2018;9(2):91.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11(1):31.CrossRefGoogle Scholar
  23. 23.
    Ansorge WJ. Next-generation DNA sequencing techniques. New Biotechnol. 2009;25(4):195–203.CrossRefGoogle Scholar
  24. 24.
    Medini D, Serruto D, Parkhill J, Relman DA, Donati C, Moxon R, Falkow S, Rappuoli R. Microbiology in the post-genomic era. Nat Rev Microbiol. 2008;6(6):419.PubMedCrossRefGoogle Scholar
  25. 25.
    Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    MacLean D, Jones JD, Studholme DJ. Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat Rev Microbiol. 2009;7(4):287.PubMedCrossRefGoogle Scholar
  27. 27.
    Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V. A metagenomic survey of microbes in honey bee colony collapse disorder. Science. 2007;318(5848):283–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, Conlan S, Quan PL, Hui J, Marshall J, Simons JF. A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med. 2008;358(10):991–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Towner JS, Sealy TK, Khristova ML, Albariño CG, Conlan S, Reeder SA, Quan PL, Lipkin WI, Downing R, Tappero JW, Okware S. Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog. 2008;4(11):e1000212.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wong K, Fong TT, Bibby K, Molina M. Application of enteric viruses for fecal pollution source tracking in environmental waters. Environ Int. 2012;45:151–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Bibby K, Viau E, Peccia J. Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Lett Appl Microbiol. 2011;52(4):386–92.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ge X, Li Y, Yang X, Zhang H, Zhou P, Zhang Y, Shi Z. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J Virol. 2012;86(8):4620–30.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Nakamura S, Yang CS, Sakon N, Ueda M, Tougan T, Yamashita A, Goto N, Takahashi K, Yasunaga T, Ikuta K, Mizutani T. Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. PLoS One. 2009;4(1):e4219.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    de Vries M, Deijs M, Canuti M, van Schaik BD, Faria NR, van de Garde MD, Jachimowski LC, Jebbink MF, Jakobs M, Luyf AC, Coenjaerts FE. A sensitive assay for virus discovery in respiratory clinical samples. PLoS One. 2011;6(1):e16118.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yozwiak NL, Skewes-Cox P, Stenglein MD, Balmaseda A, Harris E, DeRisi JL. Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS Negl Trop Dis. 2012;6(2):e1485.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Schowalter RM, Pastrana DV, Pumphrey KA, Moyer AL, Buck CB. Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe. 2010;7(6):509–15.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Woo HJ, Reifman J. A quantitative quasispecies theory-based model of virus escape mutation under immune selection. Proc Natl Acad Sci. 2012;109(32):12980–5.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Bartolini B, Chillemi G, Abbate I, Bruselles A, Rozera G, Castrignanò T, Paoletti D, Picardi E, Desideri A, Pesole G, Capobianchi MR. Assembly and characterization of pandemic influenza A H1N1 genome in nasopharyngeal swabs using high-throughput pyrosequencing. Microbiol Q J Microbiol Sci. 2011;34(4):391.Google Scholar
  39. 39.
    Selleri M, Piralla A, Rozera G, Giombini E, Bartolini B, Abbate I, Campanini G, Rovida F, Dossena L, Capobianchi MR, Baldanti F. Detection of haemagglutinin D222 polymorphisms in influenza A (H1N1) pdm09-infected patients by ultra-deep pyrosequencing. Clin Microbiol Infect. 2013;19(7):668–73.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Jia JA, Liang X, Chen S, Wang H, Li H, Fang M, Bai X, Wang Z, Wang M, Zhu S, Sun F. Next-generation sequencing revealed divergence in deletions of the preS region in the HBV genome between different HBV-related liver diseases. J Gen Virol. 2017;98(11):2748–58.PubMedCrossRefGoogle Scholar
  41. 41.
    Bai X, Jia JA, Fang M, Chen S, Liang X, Zhu S, Zhang S, Feng J, Sun F, Gao C. Deep sequencing of HBV pre-S region reveals high heterogeneity of HBV genotypes and associations of word pattern frequencies with HCC. PLoS Genet. 2018;14(2):e1007206.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Xu B, Tan Z, Li K, Jiang T, Peng Y. Predicting the host of influenza viruses based on the word vector. PeerJ. 2017;5:e3579.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wokaun A, Schrader B. Infrared and Raman spectroscopy-methods and applications. VCH, Weinheim; 1995, DM 298,-, ISBN 3-527-26446-9. Berichte der Bunsengesellschaft für physikalische Chemie. 1996;100(7):1268-.Google Scholar
  44. 44.
    Gremlich HU, Yan B. Infrared and Raman spectroscopy of biological materials. Boca Raton: CRC Press; 2000.CrossRefGoogle Scholar
  45. 45.
    Wartewig S, Neubert RH. Pharmaceutical applications of Mid-IR and Raman spectroscopy. Adv Drug Deliv Rev. 2005;57(8):1144–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Vandenabeele P. Practical Raman spectroscopy: an introduction. Chichester, United Kingdom: Wiley; 2013 Jul 3.CrossRefGoogle Scholar
  47. 47.
    Blanch EW, Hecht L, Barron LD. Vibrational Raman optical activity of proteins, nucleic acids, and viruses. Methods. 2003;29(2):196–209.PubMedCrossRefGoogle Scholar
  48. 48.
    Tsuboi M, Kubo Y, Ikeda T, Overman SA, Osman O, Thomas GJ. Protein and DNA residue orientations in the filamentous virus Pf1 determined by polarized Raman and polarized FTIR spectroscopy. Biochemistry. 2003;42(4):940–50.PubMedCrossRefGoogle Scholar
  49. 49.
    Benevides JM, Juuti JT, Tuma R, Bamford DH, Thomas GJ. Characterization of subunit-specific interactions in a double-stranded RNA virus: Raman difference spectroscopy of the φ6 procapsid. Biochemistry. 2002;41(40):11946–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Tuma R, Thomas GJ Jr. Mechanisms of virus assembly probed by Raman spectroscopy: the icosahedral bacteriophage P22. Biophys Chem. 1997;68(1–3):17–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Radzol AR, Lee KY, Mansor W, Omar IS. PCA criterion for SVM (MLP) classifier for flavivirus biomarker from salivary SERS spectra at febrile stage. In: 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2016 August 16, p. 6206–6209. IEEE.Google Scholar
  52. 52.
    Khan S, Ullah R, Khan A, Ashraf R, Ali H, Bilal M, Saleem M. Analysis of hepatitis B virus infection in blood sera using Raman spectroscopy and machine learning. Photodiagn Photodyn Ther. 2018;23:89–93.CrossRefGoogle Scholar
  53. 53.
    Scaglia E, Sockalingum GD, Schmitt J, Gobinet C, Schneider N, Manfait M, Thiéfin G. Noninvasive assessment of hepatic fibrosis in patients with chronic hepatitis C using serum Fourier transform infrared spectroscopy. Anal Bioanal Chem. 2011;401(9):2919.PubMedCrossRefGoogle Scholar
  54. 54.
    Khan S, Ullah R, Khan A, Wahab N, Bilal M, Ahmed M. Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM). Biomed Opt Express. 2016;7(6):2249–56.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lee H, Kim MS, Lim HS, Park E, Lee WH, Cho BK. Detection of cucumber green mottle mosaic virus-infected watermelon seeds using a near-infrared (NIR) hyperspectral imaging system: application to seeds of the “Sambok Honey” cultivar. Biosyst Eng. 2016;148:138–47.CrossRefGoogle Scholar
  56. 56.
    Peng J, Song K, Zhu H, Kong W, Liu F, Shen T, He Y. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy. Sci Rep. 2017;7:44551.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
  58. 58.
    Desai DV, Kulkarni-Kale U. T-cell epitope prediction methods: an overview. In: Immunoinformatics. New York: Humana Press; 2014. p. 333–64.Google Scholar
  59. 59.
    Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. Fundamentals and methods for T-and B-cell epitope prediction. J Immunol Res. 2017;2017:1–14.CrossRefGoogle Scholar
  60. 60.
    Mukonyora M. A review of important discontinuous B-cell epitope prediction tools. J Clin Cell Immunol. 2015;6:358–62.CrossRefGoogle Scholar
  61. 61.
    Genetics Home Reference. Human leukocyte antigens. https://ghr.nlm.nih.gov/primer/genefamily/hla.
  62. 62.
    Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform. 2015;53:405–14.PubMedCrossRefGoogle Scholar
  63. 63.
    Backert L, Kohlbacher O. Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med. 2015;7(1):119.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Zhao Y, Pinilla C, Valmori D, Martin R, Simon R. Application of support vector machines for T-cell epitopes prediction. Bioinformatics. 2003;19(15):1978–84.PubMedCrossRefGoogle Scholar
  65. 65.
    MHC2Pred: SVM based method for prediction of promiscuous MHC Class II binders. http://crdd.osdd.net/raghava/mhc2pred/info.html.
  66. 66.
    Dönnes P, Kohlbacher O. SVMHC: a server for prediction of MHC-binding peptides. Nucleic Acids Res. 2006;34(suppl_2):W194–7.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, Braxenthaler M, Gallazzi F, Protti MP, Sinigaglia F, Hammer J. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol. 1999;17(6):555.PubMedCrossRefGoogle Scholar
  68. 68.
    Tung CW, Ziehm M, Kämper A, Kohlbacher O, Ho SY. POPISK: T-cell reactivity prediction using support vector machines and string kernels. BMC Bioinf. 2011;12(1):446.CrossRefGoogle Scholar
  69. 69.
    Kawashima S, Ogata H, Kanehisa M. AAindex: amino acid index database. Nucleic Acids Res. 1999;27(1):368–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Su CH, Pal NR, Lin KL, Chung IF. Identification of amino acid propensities that are strong determinants of linear B-cell epitope using neural networks. PLoS One. 2012;7(2):e30617.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Yao B, Zhang L, Liang S, Zhang C. SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One. 2012;7(9):e45152.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Bhagwat M, Aravind L. Psi-blast tutorial. In: Comparative genomics. Totowa: Humana Press; 2007. p. 177–86.Google Scholar
  73. 73.
    Ren J, Liu Q, Ellis J, Li J. Positive-unlabeled learning for the prediction of conformational B-cell epitopes. BMC Bioinf. 2015;16(18):S12.CrossRefGoogle Scholar
  74. 74.
  75. 75.
    Huang WL, Tsai MJ, Hsu KT, Wang JR, Chen YH, Ho SY. Prediction of linear B-cell epitopes of hepatitis C virus for vaccine development. BMC Med Genet. 2015;8(4):S3.Google Scholar
  76. 76.
    Ansari HR, Raghava GP. Identification of conformational B-cell epitopes in an antigen from its primary sequence. Immunome Res. 2010;6(1):6.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Safari-Alighiarloo N, Taghizadeh M, Rezaei-Tavirani M, Goliaei B, Peyvandi AA. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol Hepatol Bed Bench. 2014;7(1):17.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Zhou X, Park B, Choi D, Han K. A generalized approach to predicting protein-protein interactions between virus and host. BMC Genomics. 2018;19(6):165.Google Scholar
  79. 79.
    Rao VS, Srinivas K, Sujini GN, Kumar GN. Protein-protein interaction detection: methods and analysis. Int J Proteomics. 2014;2014:147648.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Gonzalez MW, Kann MG. Protein interactions and disease. PLoS Comput Biol. 2012;8(12):e1002819.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Brito AF, Pinney JW. Protein–protein interactions in virus–host systems. Front Microbiol. 2017;8:1557.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    MacArthur RD, Novak RM. Maraviroc: the first of a new class of antiretroviral agents. Clin Infect Dis. 2008;47(2):236–41.PubMedCrossRefGoogle Scholar
  83. 83.
    Mei S, Zhu H. A novel one-class SVM based negative data sampling method for reconstructing proteome-wide HTLV-human protein interaction networks. Sci Rep. 2015;5:8034.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Blohm P, Frishman G, Smialowski P, Goebels F, Wachinger B, Ruepp A, Frishman D. Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis. Nucleic Acids Res. 2013;42(D1):D396–400.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Emamjomeh A, Goliaei B, Zahiri J, Ebrahimpour R. Predicting protein–protein interactions between human and hepatitis C virus via an ensemble learning method. Mol BioSyst. 2014;10(12):3147–54.PubMedCrossRefGoogle Scholar
  86. 86.
    Cui G, Fang C, Han K. Prediction of protein-protein interactions between viruses and human by an SVM model. BMC Bioinf. 2012;13(7):S5. BioMed Central.CrossRefGoogle Scholar
  87. 87.
    Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST). 2011;2(3):27.Google Scholar
  88. 88.
    Dyer MD, Murali TM, Sobral BW. Supervised learning and prediction of physical interactions between human and HIV proteins. Infect Genet Evol. 2011;11(5):917–23.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kim B, Alguwaizani S, Zhou X, Huang DS, Park B, Han K. An improved method for predicting interactions between virus and human proteins. J Bioinforma Comput Biol. 2017;15(01):1650024.CrossRefGoogle Scholar
  90. 90.
    Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H. Predicting protein–protein interactions based only on sequences information. Proc Natl Acad Sci. 2007;104(11):4337–41.PubMedCrossRefGoogle Scholar
  91. 91.
    Eid FE, ElHefnawi M, Heath LS. DeNovo: virus-host sequence-based protein–protein interaction prediction. Bioinformatics. 2015;32(8):1144–50.PubMedCrossRefGoogle Scholar
  92. 92.
    Martín V, Perales C, Abia D, Ortíz AR, Domingo E, Briones C. Microarray-based identification of antigenic variants of foot-and-mouth disease virus: a bioinformatics quality assessment. BMC Genomics. 2006;7(1):117.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Li H, Sun F. Comparative studies of alignment, alignment-free and SVM based approaches for predicting the hosts of viruses based on viral sequences. Sci Rep. 2018;8(1):10032.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Huang KY, Lu CT, Bretaña NA, Lee TY, Chang TH. ViralPhos: incorporating a recursively statistical method to predict phosphorylation sites on virus proteins. BMC Bioinf. 2013;14(16):S10.CrossRefGoogle Scholar
  95. 95.
    Cruz-Cano R, Chew DS, Choi KP, Leung MY. Least-squares support vector machine approach to viral replication origin prediction. INFORMS J Comput. 2010;22(3):457–70.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Shatabda S, Saha S, Sharma A, Dehzangi A. iPHLoc-ES: identification of bacteriophage protein locations using evolutionary and structural features. J Theor Biol. 2017;435:229–37.PubMedCrossRefGoogle Scholar
  97. 97.
    Qin Z, Wang M, Yan A. QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM). Bioorg Med Chem Lett. 2017;27(13):2931–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Liu Z, Lv H, Han J, Liu R. A computational model for predicting transmembrane regions of retroviruses. J Bioinforma Comput Biol. 2017;15(03):1750010.CrossRefGoogle Scholar
  99. 99.
    Döring M, Borrego P, Büch J, Martins A, Friedrich G, Camacho RJ, Eberle J, Kaiser R, Lengauer T, Taveira N, Pfeifer N. A genotypic method for determining HIV-2 coreceptor usage enables epidemiological studies and clinical decision support. Retrovirology. 2016;13(1):85.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wee LJ, Simarmata D, Kam YW, Ng LF, Tong JC. SVM-based prediction of linear B-cell epitopes using Bayes Feature Extraction. BMC Genomics. 2010;11(4):S21. BioMed Central.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    EL-Manzalawy Y, Dobbs D, Honavar V. Predicting linear B-cell epitopes using string kernels. J Mol Recognit Interdiscip J. 2008;21(4):243–55.CrossRefGoogle Scholar
  102. 102.
    Qureshi A, Kaur G, Kumar M. AVC pred: an integrated web server for prediction and design of antiviral compounds. Chem Biol Drug Des. 2017;89(1):74–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sonal Modak
    • 1
  • Swati Mehta
    • 1
  • Deepak Sehgal
    • 1
  • Jayaraman Valadi
    • 1
    • 2
    Email author
  1. 1.Life Sciences and Healthcare UnitPersistent Systems Ltd.PuneIndia
  2. 2.Center for Development of Advanced Computing, Savitri Bai Phule Pune UniversityPuneIndia

Personalised recommendations