Advertisement

Semi-Inner Products and Parapreseminorms on Groups and a Generalization of a Theorem of Maksa and Volkmann on Additive Functions

  • Árpád SzázEmail author
Chapter

Abstract

By using inner products and paraprenorms on groups, we prove a natural generalization of a basic theorem of Gyula Maksa and Peter Volkmann on additive functions.

Keywords

Groups Semi-inner products Parapreseminorms Additive functions 

Mathematics Subject Classification (2010)

Primary 39B52 39B62; Secondary 20A99 46C50 

Notes

Acknowledgements

The work of the author has been supported by the Hungarian Scientific Research Fund (OTKA) Grant K-111651.

Moreover, the author is greatly indebted to Zoltán Boros, Gyula Maksa, Attila Gilányi and Jens Schwaiger for some inspiring conversations.

References

  1. 1.
    Aczél, J., Dhombres, J.: Functional Equations in Several Variables. Cambridge University Press, Cambridge (1989)CrossRefzbMATHGoogle Scholar
  2. 2.
    Alsina, C., Sikorska, J., Tomás, M. S.: Norm Derivatives and Characterizations of Inner Product Spaces. World Scientific, New Yersey (2010)zbMATHGoogle Scholar
  3. 3.
    Amir, D: Characterizations of Inner Product Spaces. Birkhäuser, Besel (1986)Google Scholar
  4. 4.
    Antoine, J.-P., Grossmann, A.: Partial inner product spaces. I. General properties. J. Funct. Anal. 23, 369–378 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Baker J.A.: On quadratic functionals continuous along rays. Glasnik Mat. 23, 215–229 (1968)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Baron, K.: On additive involutions and Hamel bases. Aquationes Math. 87, 159–163 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Baron, K.: Orthogonally additive bijections are additive. Aequationes Math. 89, 297–299 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Batko, B, Tabor, J.: Stability of an alternative Cauchy equation on a restricted domain. Aequationes Math. 57, 221–232 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Batko, B., Tabor, J.: Stability of the generalized alternative Cauchy equation. Abh. Math. Sem. Univ. Hamburg 69, 67–73 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Bognár, J.: Indefinite Inner Product Spaces. Springer, Berlin (1974)CrossRefzbMATHGoogle Scholar
  11. 11.
    Boros, Z.: Schwarz inequality over groups. In: Talk Held at the Conference on Inequalities and Applications, Hajdúszoboszló, Hungary (2016)Google Scholar
  12. 12.
    Boros, Z., Száz, Á.: Semi-inner products and their induced seminorms and semimetrics on groups, Technical Report, 2016/6, 11 pp. Institute of Mathematics, University of Debrecen, Debrecen (2016)Google Scholar
  13. 13.
    Boros, Z., Száz, Á.: A weak Schwarz inequality for semi-inner products on groupoids, Rostock. Math. Kolloq. 71, 28–40 (2016)MathSciNetGoogle Scholar
  14. 14.
    Boros, Z, Száz, Á.: Generalized Schwarz inequalities for generalized semi-inner products on groupoids can be derived from an equality. Novi Sad J. Math. 47, 177–188 (2017)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Boros, Z., Száz, Á.: Infimum problems derived from the proofs of some generalized Schwarz inequalities, Teaching Math. Comput. Sci. 17, 41–57 (2019)CrossRefGoogle Scholar
  16. 16.
    Brzdek, J.: A note on stability of the Popoviciu functional equation on restricted domain. Demonstration Math. 43, 635–641 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Brzdek, J., Ciepliński, K: Hyperstability and superstability. Abst. Appl. Anal. 2013, 13 (2013)Google Scholar
  18. 18.
    Burai, P., Száz, Á.: Relationships between homogeneity, subadditivity and convexity properties. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 16, 77–87 (2005)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Chmieliński, J.: Normed spaces equivalent to inner product spaces and stability of functional equations. Aequationes Math. 87, 147–157 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Chmieliński, J.: A note on a characterization of metrics generated by norms. Rocky Mt. J. Math. 45, 1801–1805 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Chmieliński, J.: On functional equations related to additive mappings and isometries. Aequationes Math. 89, 97–105 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Chung, S.-C., Lee, S.-B., Park, W.-G.: On the stability of an additive functional inequality. Int. J. Math. Anal. 6, 2647–2651 (2012)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Dhombres, J.G.: Some Aspects of Functional Equations. Chulalongkorn University, Bangkok (1979)zbMATHGoogle Scholar
  24. 24.
    Dong, Y.: Generalized stabilities of two functional equations. Aequationes Math. 86, 269–277 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Dong, Y., Chen, L.: On generalized Hyers-Ulam stability of additive mappings on restricted domains of Banach spaces. Aequationes Math. 90, 871–878 (2016)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Dong, Y., Zheng, B.: On hyperstability of additive mappings onto Banach spaces. Bull. Aust. Math. Soc. 91, 278–285 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Dragomir, S.S.: Semi-Inner Products and Applications. Nova Science Publishers, Hauppauge (2004)zbMATHGoogle Scholar
  28. 28.
    Drygas, H.: Quasi-inner products and their applications. In: Gupta, A.K. (Ed.) Advances in Multivariate Statistical Analysis. Theory and Decision Library (Series B: Mathematical and Statistical Methods), vol. 5, pp. 13–30. Reidel, Dordrecht (1987)CrossRefGoogle Scholar
  29. 29.
    Ebanks, B.R., Kannappan Pl., Sahoo, P.K.: A common generalization of functional equations characterizing normed and quasi-inner-product spaces. Canad. Math. Bull. 35, 321–327 (1992)Google Scholar
  30. 30.
    Elqorachi, E., Manar, Y., Rassias, Th.M.: Hyers-Ulam stability of the quadratic functional equation. In: Rassias, Th.M., Brdek, J. (Eds.) Functional Equations in Mathematical Analysis. Springer Optimization and Its Applications, vol. 52, pp. 97–105 (2012)CrossRefGoogle Scholar
  31. 31.
    Fechner, W.: Stability of a functional inequality associated with the Jordan-von Neumann functional equation. Aequationes Math. 71, 149–161 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Fechner, W.: On the Hyers-Ulam stability of functional equations connected with additive and quadratic mappings. J. Math. Anal. Appl. 322, 774–786 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Fechner, W.: Hlawka’s functional inequality. Aequationes Math. 87, 71–87 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Fechner, W.: Hlawka’s functional inequality on topological groups. Banach J. Math. Anal. 11, 130–142 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Fischer, P., Muszély, Gy.: Some generalizations of Cauchy’s functional equations (Hungarian). Mat. Lapok 16, 67–75 (1965)Google Scholar
  36. 36.
    Fischer, P., Muszély, Gy.: On some new generalizations of the functional equation of Cauchy. Can. Math. Bull. 10, 197–205 (1967)Google Scholar
  37. 37.
    Fochi, M.: An alternative functional equation on restrictef domain. Aequationes Math. 70, 201–212 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Fréchet, M.: Sur lá definition axiomatique d’une classe d’espaces vectoriels distanciés applicables vectoriellement sur l’espace de Hilbert. Ann. Math. 36, 705–718 (1935)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Gǎvruta, P.: On the Hyers-Ulam-Rassias stability of the quadratic mappings. Nonlinear Funct. Anal. Appl. 9, 415–428 (2004)Google Scholar
  40. 40.
    Ger, R.: On a characterization of strictly convex spaces. Atti Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 127, 131–138 (1993)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Ger, R.: A Pexider-type equation in normed linear spaces. Sitzungsber. Abt. II 206, 291–303 (1997)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Ger, R.: Fischer–Muszély additivity on Abelian groups. Comment Math. Tomus Specialis in Honorem Juliani Musielak, pp. 83–96 (2004)Google Scholar
  43. 43.
    Ger, R.: On a problem of Navid Safaei. In: Talk Held at the Conference on Inequalities and Applications, Hajdúszoboszló, Hungary (2016)Google Scholar
  44. 44.
    Ger, R.: Fischer-Muszély additivity – a half century story. In: Brzdek, J., Ciepliński, K., Rassias, Th.M. (eds.) Developments in Functional Equations and Related Topics. Springer Optimization and Its Applications, pp. 69–102. Springer, Basel (2017)Google Scholar
  45. 45.
    Ger, R., Koclega, B.: Isometries and a generalized Cauchy equation. Aequationes Math. 60, 72–79 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  46. 46.
    Ger, R., Koclega, B.: An interplay between Jensen’s and Pexider’s functional equations on semigroups. Ann. Univ. Sci. Budapest Sect Comp. 35, 107–124 (2011)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Gilányi, A.: Eine zur Parallelogrammgleichung äquivalente Ungleichung. Aequationes Math. 62, 303–309 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  48. 48.
    Gilányi, A.: On a problem by K. Nikodem. Math. Ineq. Appl. 5, 707–710 (2002)zbMATHGoogle Scholar
  49. 49.
    Gilányi, A., Troczka-Pawelec, K.: Regularity of weakly subquadratic functions. J. Math. Anal. Appl. 382, 814–821 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    Gilányi, A., Kézi, Cs., Troczka-Pawelec, K.: On two different concepts of subquadraticity. Inequalities and Applications 2010. International Series of Numerical Mathematics, vol. 161, pp. 209–215. Birkhäuser, Basel (2012)Google Scholar
  51. 51.
    Giles, J.R.: Classes of semi-inner-product spaces. Trans. Am. Math. Soc. 129, 436–446 (1967)CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    Glavosits, T., Száz, Á.: Divisible and cancellable subsets of groupoids. Ann. Math. Inform. 43, 67–91 (2014)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Golab, S., Światak, H.: Note on inner products in vector spaces. Aequationes Math. 8, 74–75 (1972)CrossRefMathSciNetzbMATHGoogle Scholar
  54. 54.
    Haruki, H.: On the functional equations | f (x + iy)| = | f (x) + f (i y)| and | f (x + iy)| = | f (x) − f (i y)| and on Ivory’s theorem. Canad. Math. Bull. 9, 473–480 (1966)CrossRefMathSciNetzbMATHGoogle Scholar
  55. 55.
    Haruki, H.: On the equivalence of Hille’s and Robinson’s functional equations. Ann. Polon. Math. 28, 261–264 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  56. 56.
    Hosszú, M.: On an alternative functional equation (Hungarian). Mat. Lapok 14, 98–102 (1963)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Hosszú, M.: A remark on the square norm. Aequationes Math. 2, 190–193 (1969)CrossRefMathSciNetzbMATHGoogle Scholar
  58. 58.
    Istrǎtescu, V.I.: Inner Product Structures, Theory and Applications. Reidel, Dordrecht (1987)Google Scholar
  59. 59.
    Joichi, J.T.: Normed linear spaces equivalent to inner product spaces. Proc. Am. Math. Soc. 17, 423–426 (1966)CrossRefMathSciNetzbMATHGoogle Scholar
  60. 60.
    Jordan, P., von Neumann, J.: On inner products in linear metric spaces. Ann. Math. 36, 719–723 (1935)CrossRefMathSciNetzbMATHGoogle Scholar
  61. 61.
    Jung, S.-M.: On the Hyers-Ulam stability of the functional equations that have the quadratic property. J. Math. Anal. Appl. 222, 126–137 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  62. 62.
    Kannappan, Pl.: Quadratic functional equation and inner product spaces. Results Math. 27, 368–372 (1995)Google Scholar
  63. 63.
    Kannappan, Pl.: Functional Equations and Inequalities with Applications. Springer, Dordrecht (2009)CrossRefzbMATHGoogle Scholar
  64. 64.
    Kominek, Z.: Stability of a quadratic functional equation on semigroups. Publ. Math. Debrecen 75, 173–178 (2009)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Kominek, Z.: On a Dygras inequality. Tatra Mt. Math. Publ. 52, 65–70 (2012)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Kominek, Z., Troczka, K.: Some remarks on subquadratic functions. Demonstr. Math. 39, 751–758 (2006)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Kominek, Z., Troczka, K.: Continuity of real valued subquaratic functions. Comment. Math. 51, 71–75 (2011)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Kuczma, M.: On some alternative functional equations. Aequationes Math. 17, 182–198 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  69. 69.
    Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Państwowe Wydawnictwo Naukowe, Warszawa (1985)Google Scholar
  70. 70.
    Kurepa, S.: The Cauchy functional equation and scalar product in vector spaces. Glasnik Mat. 19, 23–35 (1964)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Kurepa, S.: Quadratic and sesquilinear functionals. Glasnik Mat. 20, 79–91 (1965)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Kurepa, S.: On bimorphisms and quadratic forms on groups. Aequationes Math. 9, 30–45 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  73. 73.
    Kurepa, S.: On the definition of a quadratic form. Publ. Ints. Math (Beograd) 42, 35–41 (1987)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Kurepa, S.: On P. Volkmann’s paper. Glasnik Mat. 22, 371–374 (1987)MathSciNetGoogle Scholar
  75. 75.
    Kwon, Y.H., Lee, H.M., Sim, J.S., Yand, J., Park, C.: Jordan-von Neumann type functional inequalities. J. Chungcheong Mah. Soc. 20, 269–277 (2007)Google Scholar
  76. 76.
    Lee, Y.-H., Jung, S.-M.: A general uniqueness theorem concerning the stability of additive and quadratic equations. J. Funct. Spaces 2015, 8 (2015). Art. ID 643969Google Scholar
  77. 77.
    Lee, J.R., Park, C., Shin, D.Y.: On the stability of generalized additive functional inequalities in Banach spaces. J. Ineq. Appl. 2008, 13 (2008). Art. ID 210626Google Scholar
  78. 78.
    Lumer, G.: Semi-inner-product spaces. Trans. Am. Math. Soc. 100, 29–43 (1961)CrossRefMathSciNetzbMATHGoogle Scholar
  79. 79.
    Makai, I.: Über invertierbare Lösungen der additive Cauchy-Functionalgleichung. Publ. Math. Debrecen 16, 239–243 (1969)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Maksa, Gy.: A remark of symmetric biadditive functions having nonnegative diagonalization. Glasnik Mat. 15, 279–282 (1980)Google Scholar
  81. 81.
    Maksa, Gy.: Remark on the talk of P. Volkmann. In: Proceedings of the Twenty-third International Symposium on Functional Equations. Gargano, Italy (1985)Google Scholar
  82. 82.
    Maksa, Gy., Volkmann, P.: Characterizations of group homomorphisms having values in an inner product space. Publ. Math. Debrecen 56, 197–200 (2000)Google Scholar
  83. 83.
    Manar, Y., Elqorachi, E.: On functional inequalities associated with Drygas functional equation. Tbilisi Math. J. 7, 73–78 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  84. 84.
    Marinescu, D.S., Monea, M., Opincariu, M., Stroe, M.: Some equivalent characterizations of inner product spaces and their consequences. Filomat 29, 1587–1599 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  85. 85.
    Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer, Dordrecht (1993)CrossRefzbMATHGoogle Scholar
  86. 86.
    Multarziński, P.: Semi-inner product structures for groupoids (2013). arXiv:1301.0764v1 [math.GR]Google Scholar
  87. 87.
    Najati, A., Rassias, Th.M.: Stability of mixed functional equation in several variables on Banach modules. Nonlinear Anal. 72, 1755–1767 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  88. 88.
    Nakmahachalasint, P.: On the generalized Ulam-Gavruta-Rassias stability of mixed-type linear and Euler-Lagrange-Rassias functional equations. Int. J. Math. Math. Sci. 2007, 10 (2007). At. ID 63239Google Scholar
  89. 89.
    Nakmahachalasint, P.: Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabilities of an additive functional equation in several variables. Int. J. Math. Math. Sci. 2007, 6 (2007). At. ID 13437Google Scholar
  90. 90.
    Ng, C.T., Zhao, H.Y.: Kernel of the second order Cauchy difference on groups. Aequationes Math. 86, 155–170 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  91. 91.
    Nikodem, K.: 7. Problem. Aequationes Math. 61, 301 (2001)Google Scholar
  92. 92.
    Oikhberg, T., Rosenthal, H.: A metric characterization of normed linear spaces. Rocky Mont. J. Math. 37, 597–608 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  93. 93.
    Oubbi, L.: Ulam-Hyers-Rassias stability problem for several kinds of mappings. Afr. Mat. 24, 525–542 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  94. 94.
    Park, Ch., Cho, Y.S., Han, M.-H. Functional inequalities associated with Jordan–von Neumann type additive functional equations. J. Ineq. Appl. 2007, 13 (2007). Art. ID 41820Google Scholar
  95. 95.
    Park, C., Lee, J.R., Rassias, Th.M.: Functional inequalities in Banach spaces and fuzzy Banach spaces. In: Rassias, Th.M., Pardalos, P.M. (eds.) Essays in Mathematics and Its Applications, pp. 263–310. Springer, Cham (2016)Google Scholar
  96. 96.
    Parnami, J.C., Vasudeva, H.L.: On Jensen’s functional equation. Aequationes Math. 43, 211–218 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  97. 97.
    Piejko, K.: Note on Robinson’s Functional equation. Demonstratio Math. 32, 713–715 (1999)MathSciNetzbMATHGoogle Scholar
  98. 98.
    Popoviciu, T.: Sur certaines inéqualités qui caractérisentes fonctions convexes. An. Stiint. Univ. Al. I. Cuza Iasi 11, 155–164 (1965)Google Scholar
  99. 99.
    Rassias, J.M.: On the Ulam stability of mixed type mappings on restricted domains. J. Math. Anal. Appl. 276, 747–762 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  100. 100.
    Rätz, J.: On inequalities associated with the Jordan-von Neumann functional equation. Aequationes Math. 66, 191–200 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  101. 101.
    Robinson, R.M.: A curious trigonometric identity. Am. Math. Monthly 64, 83–85 (1957)CrossRefMathSciNetzbMATHGoogle Scholar
  102. 102.
    Roh, J., Chang, I.-S.: Functional inequalities associated with additive mappings. Abst. Appl. Anal. 2008, 11 (2008). Art. ID 136592Google Scholar
  103. 103.
    Röhmer, J.: Ein Charakterisierung quadratischer Formen durch eine Functionalgleichung. Aequationes Math. 15, 163–168 (1977)CrossRefMathSciNetGoogle Scholar
  104. 104.
    Rosenbaum, R.A.: Sub-additive functions. Duke Math. J. 17, 227–247 (1950)CrossRefMathSciNetzbMATHGoogle Scholar
  105. 105.
    Schöpf, P.: Solutions of ∥ f(ξ + η) ∥ = ∥ f (ξ) + f (η) ∥. Math. Pannon. 8, 117–127 (1997)MathSciNetGoogle Scholar
  106. 106.
    Šemrl, P.: A characterization of normed spaces. J. Math. Anal. Appl. 343, 1047–1051 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  107. 107.
    Šemrl, P.: A characterization of normed spaces among metric spaces. Rocky Mt. J. Math. 41, 293–298 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  108. 108.
    Sikorska, J.: Stability of the preservation of the equality of distance. J. Math. Anal. Appl. 311, 209–217 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  109. 109.
    Sinopoulos, P.: Functional equations on semigroups. Aequationes Math. 59, 255–261 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  110. 110.
    Skof, F.: On the functional equation ∥ f (x + y) − f (x) ∥ = ∥ f (y) ∥. Atti Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 127, 229–237 (1993)MathSciNetzbMATHGoogle Scholar
  111. 111.
    Skof, F.: On two conditional forms of the equation ∥ f (x + y) ∥ = ∥ f (x) + f(y) ∥. Aequationes Math. 45, 167–178 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  112. 112.
    Skof, F.: On the stability of functional equations on a restricted domain and a related topic. In: Tabor, J., Rassias, Th.M. (eds.) Stability of Mappings of Hyers-Ulam Type, pp. 141–151. Hadronic Press, Palm Harbor (1994)zbMATHGoogle Scholar
  113. 113.
    Smajdor, W.: On a Jensen type functional equation. J. Appl. Anal. 13, 19–31 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  114. 114.
    Stetkaer, H.: Functional Equations on Groups. World Scientific, New Jersey (2013)CrossRefzbMATHGoogle Scholar
  115. 115.
    Światak, H.: On the functional equation f (x + y)2 = [ f (x) + f (y) ]2. Publ. Techn. Univ. Miskolc 30, 307–308 (1970)Google Scholar
  116. 116.
    Światak, H., Hosszú, M.: Remarks on the functional equation e (x, y) f (x + y) = f (x) + f (y). Publ. Techn. Univ. Miskolc 30, 323–325 (1970)Google Scholar
  117. 117.
    Szabó, Gy.: A conditional Cauchy equation on normed spaces. Publ. Math. Debrecen 42, 265–271 (1993)Google Scholar
  118. 118.
    Száz, Á.: Preseminormed spaces. Publ. Math. Debrecen 30, 217–224 (1983)MathSciNetzbMATHGoogle Scholar
  119. 119.
    Száz, Á.: An instructive treatment of convergence, closure and orthogonality in semi-inner product spaces, Technical Report, 2006/2, 29 pp. Institute of Mathematics, University of Debrecen, Debrecen (2006)Google Scholar
  120. 120.
    Száz, Á.: Applications of fat and dense sets in the theory of additive functions, Technical Report, 2007/3, 29 pp. Institute of Mathematics, University of Debrecen, Debrecen (2007)Google Scholar
  121. 121.
    Száz, Á.: A generalization of a theorem of Maksa and Volkmann on additive functions, Technical Report, 2016/5, 6 pp. Institute of Mathematics, University of Debrecen (2016)Google Scholar
  122. 122.
    Száz, Á.: Remarks and Problems at the Conference on Inequalities and Applications, Hajdúszoboszló, Hungary, 2016, Technical Report, 2016/9, 34 pp. Institute of Mathematics, University of Debrecen, Debrecen (2016)Google Scholar
  123. 123.
    Száz, Á.: A natural Galois connection between generalized norms and metrics. Acta Univ. Sapientiae Math. 9, 360–373 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  124. 124.
    Száz, Á.: Generalizations of an asymptotic stability theorem of Bahyrycz, Páles and Piszczek on Cauchy differences to generalized cocycles. Stud. Univ. Babes-Bolyai Math. 63, 109–124 (2018)CrossRefzbMATHGoogle Scholar
  125. 125.
    Tabor, J.: Stability of the Fisher–Muszély functional equation. Publ. Math. Debrecen 62, 205–211 (2003)MathSciNetzbMATHGoogle Scholar
  126. 126.
    Tabor, J., Tabor, J.: 19. Remark (Solution of the 7. Problem posed by K. Nikodem.). Aequationes Math. 61, 307–309 (2001)Google Scholar
  127. 127.
    Toborg, I., Volkmann, P.: On stability of the Cauchy functional equation in groupoids. Ann. Math. Sil. 31, 155–164 (2017)MathSciNetzbMATHGoogle Scholar
  128. 128.
    Trif, T.: Hyers-Ulam-Rassias stability of a Jensen type functional equation. J. Math. Anal. Appl. 250, 579–588 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  129. 129.
    Trif, T.: Popoviciu’s and related functional equations: a survey. In: Rassias, Th.M., Andrica, D. (eds.) Inequalities and Applications, pp. 273–286. Cluj-University Press, Cluj-Napoca (2008)Google Scholar
  130. 130.
    Troczka-Pawelec, K.: Some inequalities connected with a quadratic functional equation. Pr. Nauk. Akad. Jana Dlugosza Czest. Mat. 13, 73–79 (2008)MathSciNetGoogle Scholar
  131. 131.
    Vincze, E.: On solutions of alternative functional equations (Humgarian). Mat. Lapok 15, 179–195 (1964)MathSciNetGoogle Scholar
  132. 132.
    Vincze, E.: Beitrag zur Theorie der Cauchyschen Functionalgleichungen. Arch. Math. 15, 132–135 (1964)CrossRefMathSciNetzbMATHGoogle Scholar
  133. 133.
    Vincze, E.: Über eine Verallgemeinerung der Cauchysche functionalgleichung. Funcialaj Ekvacioj 6, 55–62 (1964)zbMATHGoogle Scholar
  134. 134.
    Volkmann, P.: Pour une fonction réelle f l’inéquation | f (x) + f (y)|≤|f (x + y)| et l’équation de Cauchy sont équivalentes. In: Proceedings of the Twenty-third International Symposium on Functional Equations, Gargano, Italy (1985)Google Scholar
  135. 135.
    Vrbová, P.: Quadratic functionals and bilinear forms. Časopis Pěst. Mat. 98, 159–161 (1973)MathSciNetzbMATHGoogle Scholar
  136. 136.
    Wilanski, A.: Modern Methods in Topological Vector Spaces, McGraw-Hill, New York (1978)Google Scholar
  137. 137.
    Youssef, M., Elhoucien, E.: On functional inequalities associated with Drygas functional equation, 5 pp (2014). arXiv: 1405.7942Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of DebrecenDebrecenHungary

Personalised recommendations