Cauchy Difference Operator in Some Orlicz Spaces

  • Stanisław SiudutEmail author


Let (G, ⋅, λ) be a measurable group with a complete, left-invariant and finite measure λ. If φ is a convex φ-function satisfying conditions φ(u)∕u → 0 as u → 0, φ(u)∕u → as u →, \(f:G \rightarrow \mathbb {R}\) and the Cauchy difference \({\mathcal {C}}{}f(x,y)=f(x\cdot y)-f(x)-f(y)\) of f belongs to \({\mathcal {L}}^{\varphi }_{\lambda \times \lambda }(G \times G,\mathbb {R})\), then there exists unique additive \(A:G \to \mathbb {R}\) such that \(f-A \in {\mathcal {L}}^{\varphi }_{\lambda }(G,\mathbb {R})\). Moreover, \(\Vert f-A \Vert _{\varphi } \leq K \Vert {\mathcal {C}}{}f \Vert _{\varphi },\) where K = 1 if λ(G) ≥ 1, K = 1 + (λ(G))−1 if λ(G) < 1. Similar result we also obtain without associativity of ⋅ but with \(f \in {\mathcal {L}}^{\varphi }_{\lambda }(G,\mathbb {R})\) and with measurability of \({\mathcal {C}}{}f\). In this case A = 0 and the Cauchy difference \({\mathcal {C}} : L^{\varphi }(G,\mathbb {R}) \rightarrow L^{\varphi }(G \times G,\mathbb {R})\) is linear continuous and continuously invertible on its image, where \(L ^{\varphi }(G,\mathbb {R})\) denotes the space of equivalence classes of functions in \({\mathcal {L}}^{\varphi }(G,\mathbb {R})\). Moreover, \({\mathcal {C}}\) is compact iff \(L ^{\varphi }(G,\mathbb {R})\) has a finite dimension.

Let (G, ⋅, λ) be a measurable group with a complete, left-invariant and σ-finite measure λ such that λ(G) = . If φ is a φ-function, \(f:G \rightarrow \mathbb {R}\) and \({\mathcal {C}}{}f\in {\mathcal {L}}^{\varphi }_{\lambda \times \lambda }(G\times G,\mathbb {R})\), then there exists a unique additive \(A:G\rightarrow \mathbb {R}\), which is equal to f λ a.e.


Cauchy difference operator Orlicz spaces Ulam stability 

Mathematics Subject Classification (2010)

Primary 39B82; Secondary 46E30 


  1. 1.
    Alexiewicz, A., Orlicz, W.: Remarque sur l’équation fonctionnelle f(x + y) = f(x) + f(y). Fund. Math. 33, 314–315 (1945)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brzdek, J., Popa, D., Raşa, I.: Hyers-Ulam stability with respect to gauges. J. Math. Anal. Appl. 453, 620–628 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brzdek, J., Popa, D., Raşa, I., Xu, B.: Ulam Stability of Operators. Mathematical Analysis and Its Applications, vol. 1. Academic, London (2018)Google Scholar
  4. 4.
    Cohn, D.L.: Measure Theory, 2nd edn. Springer, New York (2013)CrossRefGoogle Scholar
  5. 5.
    Halmos, P.R.: Measure Theory. Springer, New York (1974)zbMATHGoogle Scholar
  6. 6.
    Hyers, D.H., Rassias, T.M.: Approximate homomorphisms. Aequationes Math. 44,125–153 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Krasnosel’skiǐ, M.A., Rutickiǐ, Ja.B.: Convex functions and Orlicz spaces. Problems of Contemporary Mathematics Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow (1958)Google Scholar
  8. 8.
    Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Polish Scientific Publishers (PWN) and Silesian University, Warszawa (1985)zbMATHGoogle Scholar
  9. 9.
    Laczkovich, M.: Functions with measurable differences. Acta Math. Acad. Sci. Hungar. 35(1-2), 217–235 (1980)MathSciNetCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Moszner, Z.: Stability has many names. Aequationes Math. 90, 983–999 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Musielak, J.: Orlicz spaces and modular spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)Google Scholar
  13. 13.
    Siudut, S.: Cauchy difference operator in \({\mathcal {L}} ^{p}\) spaces. Funct. Approx. Coomment. Math. XXV, 201–211 (1997)Google Scholar
  14. 14.
    Shulman, E.V.: Group representations and stability of functional equations. J. Lond. Math Soc. (2) 54(1), 111–120 (1996)Google Scholar
  15. 15.
    Tabor, J.: Stability of the Cauchy type equations in \({\mathcal {L}}_{p}\) norms. Results Math. 32(1-2), 145–158 (1997)Google Scholar
  16. 16.
    Tabor, J.: Lipschitz stability of the Cauchy and Jensen equations. Results Math. 32(1-2), 133–144 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tabor, J. Tabor, J.: Stability of the Cauchy type equations in the class of differentiable functions. J. Approx. Theory 98(1), 167–182 (1999)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yamasaki, Y.: Measures on Infinite Dimensional Spaces. World Scientific, Singapore (1985)CrossRefGoogle Scholar
  19. 19.
    Yosida, K.: Functional Analysis, 3rd edn. Springer, Berlin (1971)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of MathematicsPedagogical UniversityKrakówPoland

Personalised recommendations