Ulam Type Stability pp 273-324 | Cite as
Subdominant Eigenvalue Location and the Robustness of Dividend Policy Irrelevance
Abstract
This paper, on subdominant eigenvalue location of a bordered diagonal matrix, is the mathematical sequel to an accounting paper by Gao et al. (J Bus Financ Acc 40:673–694, 2013). We explore the following characterization of dividend-policy irrelevance (DPI) to equity valuation in a multi-dimensional linear dynamics framework L: DPI occurs under L when discounting the expected dividend stream by a constant interest rate iff that rate is equal to the dominant eigenvalue of the canonical principal submatrix A of L. This is justifiably the ‘latent’ (or gross) rate of return, since the principal submatrix relates the state variables to each other but with dividend retention. We find that DPI reduces to the placement of the maximum eigenvalue of L between the dominant and subdominant eigenvalues of A. We identify a special role, and a lower bound, for the coefficient measuring the year-on-year dividend-on-dividend sensitivity in achieving robust equity valuation (independence of small variations in the dividend policy).
Keywords
Dividend irrelevance Dominant eigenvalue Bordered diagonal matrix Performance stability Dividend-on-dividend sensitivityMathematics Subject Classification (2010)
Primary 91B32 91B38; Secondary 91G80 49J55 49K40References
- 1.Ashton, D.: The cost of equity capital and a generalization of the dividend growth model. Account. Bus. Res. 26, 34–18 (1995)CrossRefGoogle Scholar
- 2.Ashton, D., Cooke, T., Tippett, M., Wang, P.: Linear information dynamics, aggregation, dividends and “dirty surplus”. Account. Bus. Res. 34, 277–299 (2004)CrossRefGoogle Scholar
- 3.Bellman, R.: Introduction to matrix analysis. Reprint of the second (1970) edition. In: Classics in Applied Mathematics, vol. 19 (SIAM, Philadelphia, 1997)Google Scholar
- 4.Bhattacharya, S.: Imperfect information, dividend policy, and “the bird in the hand” fallacy. Bell J. Econ. 10, 259–270 (1979)CrossRefGoogle Scholar
- 5.Davies, R.O., Ostaszewski, A.J.: Optimal forward contract design for inventory: a value-of-waiting analysis. In: Brzdek, J., Popa, D., Rassias, T.M. (eds.) Ulam Type Stability, pp. 73–96. Springer, Cham (2019)Google Scholar
- 6.Dybvig, P.H., Zender, J.F.: Capital structure and dividend irrelevance with asymmetric information. Rev. Financ. Stud. 4, 201–219 (1991)CrossRefGoogle Scholar
- 7.Gao, Z., Ohlson, J.A., Ostaszewski, A.J.: Dividend policy irrelevancy and the construct of earnings. J. Bus. Financ. Acc. 40, 673–694 (2013)CrossRefGoogle Scholar
- 8.Gietzmann, M.B., Ostaszewski, A.J.: Predicting firm value: the superiority of q-theory over residual income. Account. Bus. Res. 34, 349–377 (2004)CrossRefGoogle Scholar
- 9.Henrici, P.: Applied and Computational Complex Analysis. Power Series-Integration-Conformal Mapping-Location of Zeros, vol. I, Reprinted 1988. (Wiley, Hoboken, 1974)Google Scholar
- 10.Hinrichsen, D., Kelb, B.: Stability radii and spectral value sets for real matrix perturbations. In: Systems and Networks: Mathematical Theory and Applications, vol. II, pp. 217–220. Invited and Contributed Papers (Akademie-Verlag, Berlin, 1994)Google Scholar
- 11.Horn, R.A., Johnson, C.R.: Matrix Analysis (Cambridge University Press, Cambridge, 1985)CrossRefGoogle Scholar
- 12.Hwang, S.-K.: Cauchy’s interlace theorem for eigenvalues of Hermitian matrices. Am. Math. Mon. 111, 157–159 (2004)MathSciNetCrossRefGoogle Scholar
- 13.Jack, A., Johnson, T., Zervos, M.: A singular control model with application to the goodwill problem. Stoch. Process. Appl. 118, 2098–2124 (2008)MathSciNetCrossRefGoogle Scholar
- 14.Klinger, A.: The Vandermonde matrix. Am. Math. Mon. 74, 571–574 (1967)MathSciNetzbMATHGoogle Scholar
- 15.Lo, K., Lys, T.: The Ohlson model: contribution to valuation theory, limitations, and empirical applications. J. Acc. Audit. Financ. 15, 337–367 (2000)Google Scholar
- 16.Marden, M.: The Geometry of the Zeros of a Polynomial in a Complex Variable (American Mathematical Society, New York, 1949)zbMATHGoogle Scholar
- 17.Miller, M.H., Modigliani, F.: The cost of capital, corporation finance and the theory of investment. Am. Econ. Rev. 48, 261–297 (1958)zbMATHGoogle Scholar
- 18.Miller, M.H., Modigliani, F.: Dividend policy, growth, and the valuation of shares. J. Bus. 34, 411–433 (1961)CrossRefGoogle Scholar
- 19.Miller, M.H., Modigliani, F.: Corporate income taxes and the cost of capital: a correction. Am. Econ. Rev. 53, 433–443 (1963)Google Scholar
- 20.Noble, B.: Applied Linear Algebra (Prentice-Hall, Upper Saddle River, 1969)zbMATHGoogle Scholar
- 21.Ohlson, J.: Earnings, book values, and dividends in equity valuation. Contemp. Account. Res. 11, 661–687 (1995)CrossRefGoogle Scholar
- 22.Ohlson, J.: Accounting earnings, book value, and dividends: the theory of the clean surplus equation (part I). In: Brief, R.P., Peasnell, K.V. (eds.) Clean Surplus: A Link Between Accounting and Finance, pp. 165–230 (Garland Publishing, Princeton, 1996)Google Scholar
- 23.Ohlson, J.A., Gao, Z.: Earnings growth and equity value. Found. Trends Acc. 1, 1–70 (1981)zbMATHGoogle Scholar
- 24.Preinreich, G.: The fair value and yield of common stock. Acc. Rev. 11, 130–140 (1936)Google Scholar
- 25.Rugh, W.J.: Linear System Theory (Prentice-Hall, Upper Saddle River, 1996)zbMATHGoogle Scholar
- 26.Seneta, E.: Non-negative Matrices and Markov Chains, 2nd edn. Revised reprint (1st ed. 1973) (Springer, New York, 1981)Google Scholar
- 27.Tippett, M., Warnock, T.: The Garman-Ohlson structural system. J. Bus. Financ. Acc. 24, 1075–1099 (1997)CrossRefGoogle Scholar
- 28.Wilkinson, J.H.: The Algebraic Eigenvalue Problem (Oxford University Press, Oxford, 1965)zbMATHGoogle Scholar