The Role of Innovation in Cloud–Based ERP Adoption

  • Thanh D. NguyenEmail author
  • Tu T. Huynh
  • Uyen H. Van
  • Tien M. Pham
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11703)


Enterprise resource planning based on cloud computing provides modern software solutions for the organizations. Furthermore, although there are several different studies for each topic of information systems, such as the illustrious theories of technology adoption (TAM, UTAUT), the related theories of innovation (DOI, TOE), there are not many works, which integrate with the various theories of information systems. This study investigates the role of innovation in the adoption of enterprise resource planning based on cloud computing. A total of 232 cloud–based ERP participants have been surveyed and analyzed by structural equation modeling. The findings demonstrate the components of technology–organization–environment (TOE) and the concept of innovation in the structural relationships with technology adoption. Interestingly, innovation has a positive effect on the cloud–based ERP adoption.


Cloud–based ERP Innovation Technology adoption TOE 


  1. 1.
    Ajzen, I.: From intentions to actions: a theory of planned behavior. In: Kuhl, J., Beckmann, J. (eds.) Action Control, pp. 11–39. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  2. 2.
    Akter, S., Wamba, S., Ambra, J.: Enabling service systems by modeling quality. Int. J. Prod. Econ. 207, 210–226 (2019)CrossRefGoogle Scholar
  3. 3.
    Albar, A., Hoque, M.: Factors affecting cloud ERP adoption in Saudi Arabia: an empirical study. Inform. Dev. 35(1), 150–164 (2019)CrossRefGoogle Scholar
  4. 4.
    Ali, O., Soar, J.: Technology innovation adoption theories. In: Technology Adoption and Social Issues: Concepts, Methodologies, Tools, and Applications, pp. 821–860. IGI Global (2018)Google Scholar
  5. 5.
    Alshamaila, Y., Papagiannidis, S., Li, F.: Cloud computing adoption by SMEs in the north east of England: a multi–perspective framework. J. Enterp. Inform. Manag. 26(3), 250–275 (2013)CrossRefGoogle Scholar
  6. 6.
    Awa, H., Ojiabo, O., Emecheta, B.: Integrating TAM, TPB and TOE frameworks and expanding their characteristic constructs for e–commerce adoption by SMEs. J. Sci. Technol. Policy Manag. 6(1), 76–94 (2015)CrossRefGoogle Scholar
  7. 7.
    Bharati, P., Chaudhury, A.: Studying the current status of technology adoption. Commun. ACM 49(10), 88–93 (2006)CrossRefGoogle Scholar
  8. 8.
    Binsawad, M., Sohaib, O., Hawryszkiewycz, I.: Factors impacting technology business incubator performance. Int. J. Innov. Manag. 23(01), 1950007 (2019)CrossRefGoogle Scholar
  9. 9.
    Charland, P., Leger, P., Cronan, T., Robert, J.: Developing and assessing ERP competencies: basic and complex knowledge. J. Comput. Inform. Syst. 56(1), 31–39 (2016)Google Scholar
  10. 10.
    Chen, M., Lin, Y., Huang, W.: The study on firm acceptance of cloud service introduction from the innovation diffusion theory. Int. J. Appl. Syst. Stud. 7(3), 117–137 (2017)CrossRefGoogle Scholar
  11. 11.
    Corfield, A., Paton, R.: Investigating knowledge management: can KM really change organisational culture? J. Knowl. Manag. 20(1), 88–103 (2016)CrossRefGoogle Scholar
  12. 12.
    Damanpour, F.: Organizational complexity and innovation: developing and testing multiple contingency models. Manag. Sci. 42(5), 693–716 (1996)zbMATHCrossRefGoogle Scholar
  13. 13.
    Davis, F.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13(3), 319–340 (1989)CrossRefGoogle Scholar
  14. 14.
    Deshpande, R., Webster, F.: Organizational culture and marketing: defining the research agenda. J. Mark. 53(1), 3–15 (1989)CrossRefGoogle Scholar
  15. 15.
    DeZubielqui, G., Lindsay, N., Lindsay, W., Jones, J.: Knowledge quality, innovation and firm performance: a study of knowledge transfer in SMEs. Small Bus. Econ. 53(1), 145–164 (2019)CrossRefGoogle Scholar
  16. 16.
    Fishbein, M., Ajzen, I.: Belief Attitude Intention and Behavior An Introduction to Theory and Research. Addison–Wesley, Reading (1975)Google Scholar
  17. 17.
    Frambach, R., Barkema, H., Nooteboom, B., Wedel, M.: Adoption of a service innovation in the business market: an empirical test of supply–side variables. J. Bus. Res. 41(2), 161–174 (1998)CrossRefGoogle Scholar
  18. 18.
    Gangwar, H., Date, H., Ramaswamy, R.: Understanding determinants of cloud computing adoption using an integrated TAM–TOE model. J. Enterp. Inform. Manag. 28(1), 107–130 (2015)CrossRefGoogle Scholar
  19. 19.
    Gonzalez, R., DeMelo, T.: The effects of organization context on knowledge exploration and exploitation. J. Bus. Res. 90, 215–225 (2018)CrossRefGoogle Scholar
  20. 20.
    Gupta, S., Kumar, S., Singh, S., Foropon, C., Chandra, C.: Role of cloud ERP on the performance of an organization: contingent resource based view perspective. Int. J. Logistics Manag. 29(2), 659–675 (2018)CrossRefGoogle Scholar
  21. 21.
    Gutierrez, A., Boukrami, E., Lumsden, R.: Technological, organisational and environmental factors influencing managers’ decision to adopt cloud computing in the UK. J. Enterp. Inform. Manag. 28(6), 788–807 (2015)CrossRefGoogle Scholar
  22. 22.
    Hashem, I., Yaqoob, I., Anuar, N., Mokhtar, S., Gani, A., Khan, S.: The rise of “big data” on cloud computing: review and open research issues. Inform. Syst. 47, 98–115 (2015)CrossRefGoogle Scholar
  23. 23.
    Higgins, J.: Innovation: the core competence. Plann. Rev. 23(6), 32–36 (1995)CrossRefGoogle Scholar
  24. 24.
    Hofstede, G.: Organizations and Cultures: Software of the Mind. McGrawHill, London (1991)Google Scholar
  25. 25.
    Cruz-Jesus, F., Oliveira, T., Naranjo, M.: Understanding the adoption of business analytics and intelligence. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2018 2018. AISC, vol. 745, pp. 1094–1103. Springer, Cham (2018). Scholar
  26. 26.
    Kim, D., Hebeler, J., Yoon, V., Davis, F.: Exploring determinants of semantic web technology adoption from IT professionals’ perspective: Industry competition, organization innovativeness, and data management capability. Comput. Hum. Behav. 86, 18–33 (2018)CrossRefGoogle Scholar
  27. 27.
    Klaus, H., Rosemann, M., Gable, G.: What is ERP? Inform. Syst. Front. 2(2), 141–162 (2000)CrossRefGoogle Scholar
  28. 28.
    Liu, H., Wang, X.: Strategy research of enterprise information planning based on TOE–TAM model: case study for ERP implementation of a discrete manufacturing. In: DBTA Proceedings (2010)Google Scholar
  29. 29.
    Majumdar, S., Venkataraman, S.: New technology adoption in US telecommunications: the role of competitive pressures and firm–level inducements. Res. Policy 22, 521–536 (1993)CrossRefGoogle Scholar
  30. 30.
    Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing–the business perspective. Decis. Supp. Syst. 51(1), 176–189 (2011)CrossRefGoogle Scholar
  31. 31.
    Mell, P., Grance, T.: The NIST definition of cloud computing. In: NIST Special Publication 800–145. NIST (2011)Google Scholar
  32. 32.
    Moore, G., Benbasat, I.: Integrating diffusion of innovations and theory of reasoned action models to predict utilization of information technology by end–users. In: Kautz, K., Pries-Heje, J. (eds.) Diffusion and Adoption of Information Technology, pp. 132–146. Springer, Boston (1996)CrossRefGoogle Scholar
  33. 33.
    Nguyen, T.D.: A structural model for the success of information systems projects. Sci. Technol. Dev. J. 18(2), 109–120 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Nguyen, T.D., Nguyen, T.T., Misra, S.: Cloud-based ERP solution for modern education in Vietnam. In: Dang, T.K., Wagner, R., Neuhold, E., Takizawa, M., Küng, J., Thoai, N. (eds.) FDSE 2014. LNCS, vol. 8860, pp. 234–247. Springer, Cham (2014). Scholar
  35. 35.
    Oliveira, T., Martins, M.: Understanding e–business adoption across industries in European countries. Industr. Manag. Data Syst. 110(9), 1337–1354 (2010)CrossRefGoogle Scholar
  36. 36.
    Oturakci, M., Yuregir, O.: New approach to Rogers’ innovation characteristics and comparative implementation study. J. Eng. Technol. Manag. 47, 53–67 (2018)CrossRefGoogle Scholar
  37. 37.
    Pearlson, K., Saunders, C., Galletta, D.: Managing and Using Information Systems: A Strategic Approach, 7th edn. Wiley, New York (2016)Google Scholar
  38. 38.
    Pitt, L., Berthon, P., Robson, M., Prendegast, G.: Does corporate entrepreneurship influence innovation in service firms? In: WMC 1997 Proceedings, pp. 639–645 (2015)Google Scholar
  39. 39.
    Porter, M., Millar, V.: How information gives you competitive advantage. Harvard Bus. Rev. 63(4), 149–160 (1985)Google Scholar
  40. 40.
    Rich, D., Dibbern, J.: A team–oriented investigation of ERP post–implementation integration projects: how cross–functional collaboration influences ERP benefits. In: Piazolo, F., Felderer, M. (eds.) Innovation and Future of Enterprise Information Systems, pp. 115–127. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  41. 41.
    Rogers, E.: Diffusion of Innovations: Simon & Schuster (1995)Google Scholar
  42. 42.
    Rouhani, S., Mehri, M.: Does ERP have benefits on the business intelligence readiness? an empirical study. Int. J. Inform. Syst. Change Manag. 8(2), 81–105 (2016)Google Scholar
  43. 43.
    Silver, M., Markus, M., Beath, C.: The information technology interaction model: a foundation for the MBA core course. MIS Q. 19(3), 361–390 (1995)CrossRefGoogle Scholar
  44. 44.
    Stanko, M.: Toward a theory of remixing in online innovation communities. Inform. Syst. Res. 27(4), 773–791 (2016)CrossRefGoogle Scholar
  45. 45.
    Themistocleous, M.: Justifying the decisions for EAI implementations: a validated proposition of influential factors. J. Enterp. Inform. Manag. 17(2), 85–104 (2004)CrossRefGoogle Scholar
  46. 46.
    Tornatzky, L., Fleischer, M., Chakrabarti, A.: The processes of technological innovation. Lexington Books, Lexington (1990)Google Scholar
  47. 47.
    Tornatzky, L., Klein, K.: Innovation characteristics and innovation adoption–implementation: a meta–analysis of findings. IEEE Trans. Eng. Manag. 29(1), 28–45 (1982)CrossRefGoogle Scholar
  48. 48.
    Usman, U., Ahmad, M., Zakariya, N.: Factors influencing cloud enterprise resource planning adoption in SMEs. In: Information Science & Applications, pp. 235–245 (2016)Google Scholar
  49. 49.
    VCCI: Statistical report on ICT usage in enterprises, Vietnam Chamber of Commerce and Industry (2018)Google Scholar
  50. 50.
    Velte, A., Velte, T., Elsenpeter, R.: Cloud Computing: A Practical Approach. McGraw–Hill, New York (2010)Google Scholar
  51. 51.
    Venkatesh, V., Morris, M., Davis, G., Davis, F.: User acceptance of information technology: toward a unified view. MIS Q. 27(3), 425–478 (2003)CrossRefGoogle Scholar
  52. 52.
    Venkatesh, V., Thong, J., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 36(1), 157–178 (2012)CrossRefGoogle Scholar
  53. 53.
    Weill, P., Broadbent, M.: Leveraging the New Infrastructure: How Market Leaders Capitalize on Information Technology. Harvard Business, Boston (1998)Google Scholar
  54. 54.
    Zahra, B., Egide, K., Diane, P.: Technology adoption and diffusion: a new application of the UTAUT model. Int. J. Innov. Technol. Manag. 15(06), 1950004 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Banking University of Ho Chi Minh CityHo Chi Minh CityVietnam
  2. 2.Bach Khoa UniversityHo Chi Minh CityVietnam

Personalised recommendations