NeuralHydrology – Interpreting LSTMs in Hydrology
Abstract
Despite the huge success of Long Short-Term Memory networks, their applications in environmental sciences are scarce. We argue that one reason is the difficulty to interpret the internals of trained networks. In this study, we look at the application of LSTMs for rainfall-runoff forecasting, one of the central tasks in the field of hydrology, in which the river discharge has to be predicted from meteorological observations. LSTMs are particularly well-suited for this problem since memory cells can represent dynamic reservoirs and storages, which are essential components in state-space modelling approaches of the hydrological system. On basis of two different catchments, one with snow influence and one without, we demonstrate how the trained model can be analyzed and interpreted. In the process, we show that the network internally learns to represent patterns that are consistent with our qualitative understanding of the hydrological system.
Keywords
Neural networks LSTM Interpretability Hydrology Rainfall-runoff modellingReferences
- 1.Addor, N., Newman, A.J., Mizukami, N., Clark, M.P.: Catchment Attributes for Large-Sample Studies. UCAR/NCAR, Boulder, CO (2017)Google Scholar
- 2.Anderson, E.A.: National Weather Service River Forecast System - Snow Accumulation and Ablation Model. Technical report, November, US Department of Commerce, Silver Spring (1973)Google Scholar
- 3.Arras, L., Montavon, G., Müller, K.R., Samek, W.: Explaining recurrent neural network predictions in sentiment analysis. In: EMNLP 2017 Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (WASSA), pp. 159–168 (2017)Google Scholar
- 4.Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)CrossRefGoogle Scholar
- 5.Beven, K.: How far can we go in distributed hydrological modelling ? Hydrol. Earth Syst. Sci. 5(1), 1–12 (2001)CrossRefGoogle Scholar
- 6.Bowden, G.J., Dandy, G.C., Maier, H.R.: Input determination for neural network models in water resources applications. Part 1 - Background and methodology. J. Hydrol. 301(1–4), 75–92 (2005)CrossRefGoogle Scholar
- 7.Brenner, C., Thiem, C.E., Wizemann, H.D., Bernhardt, M., Schulz, K.: Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system. Int. J. Remote Sens. 38(8–10), 3003–3026 (2017)CrossRefGoogle Scholar
- 8.Burnash, R.J.C., Ferral, R.L., McGuire, R.A.: A generalised streamflow simulation system-conceptual modelling for digital computers. Technical report, US Department of Commerce National Weather Service and State of California Department of Water Resources (1973)Google Scholar
- 9.Daniell, T.M.: Neural networks-applications in hydrology and water resources engineering. In: Proceedings of the International Hydrology and Water Resources Symposium, vol. 3, pp. 797–802. Institution of Engineers, Perth, Australia (1991)Google Scholar
- 10.Freeze, R.A., Harlan, R.L.: Blueprint for a physically-based, digitally-simulated hydrologic response model. J. Hydrol. 9(3), 237–258 (1969)CrossRefGoogle Scholar
- 11.Gupta, H.V., Sorooshian, S., Yapo, P.O.: Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J. Hydrol. Eng. 4(2), 135–143 (1999)CrossRefGoogle Scholar
- 12.Half, A.H., Half, H.M., Azmoodeh, M.: Predicting runoff from rainfall using neural networks. In: ASCE, New York, USA, pp. 760–765 (1993)Google Scholar
- 13.Hengl, T., et al.: SoilGrids250m: global gridded soil information based on machine learning, vol. 12 (2017)CrossRefGoogle Scholar
- 14.Herrnegger, M., Nachtnebel, H.P., Schulz, K.: From runoff to rainfall: Inverse rainfall-runoff modelling in a high temporal resolution. Hydrol. Earth Syst. Sci. 19(11), 4619–4639 (2015)CrossRefGoogle Scholar
- 15.Herrnegger, M., Nachtnebel, H.P., Haiden, T.: Evapotranspiration in high alpine catchments - an important part of the water balance!. Hydrol. Res. 43(4), 460 (2012)CrossRefGoogle Scholar
- 16.Hochreiter, S., Heusel, M., Obermayer, K.: Fast model-based protein homology detection without alignment. Bioinformatics 23(14), 1728–1736 (2007)CrossRefGoogle Scholar
- 17.Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
- 18.Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv preprint arXiv:1506.02078 (2015)
- 19.Kindermans, P.J., et al.: Learning how to explain neural networks: PatternNet and Pattern Attribution, pp. 1–12 (2017)Google Scholar
- 20.Klemeš, V.: Dilettantism in hydrology: transition or destiny? Water Resour. Res. 22(9 S), 177S–188S (1986)CrossRefGoogle Scholar
- 21.Klemes, V.: Stochastic models of rainfall-runoff relationship (1982)Google Scholar
- 22.Klotz, D., Herrnegger, M., Schulz, K.: Symbolic regression for the estimation of transfer functions of hydrological models. Water Resour. Res. 53(11), 9402–9423 (2017)CrossRefGoogle Scholar
- 23.Kratzert, F., Klotz, D., Brenner, C., Schulz, K., Herrnegger, M.: Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol. Earth Syst. Sci. 22(11), 6005–6022 (2018)CrossRefGoogle Scholar
- 24.Li, J., Chen, X., Hovy, E., Jurafsky, D.: Visualizing and Understanding Neural Models in NLP. arXiv preprint arXiv:1506.01066 (2015)
- 25.Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., Arheimer, B.: Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 41(3–4), 295 (2010)CrossRefGoogle Scholar
- 26.Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)CrossRefGoogle Scholar
- 27.Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P.: Hydrologic and water quality models: performance measures and evaluation criteria. Trans. ASABE 58(6), 1763–1785 (2015)CrossRefGoogle Scholar
- 28.Murdoch, W.J., Liu, P.J., Yu, B.: Beyond word importance: contextual decomposition to extract interactions from LSTMs. In: International Conference on Learning Representations (2018)Google Scholar
- 29.Myneni, R.B., et al.: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83(1–2), 214–231 (2002)CrossRefGoogle Scholar
- 30.Nash, J.E., Sutcliffe, J.V.: River flow forecasting through conceptual models part I - a discussion of principles. J. Hydrol. 10(3), 282–290 (1970)CrossRefGoogle Scholar
- 31.Newman, A., Sampson, K., Clark, M., Bock, A., Viger, R., Blodgett, D.: A large-sample watershed-scale hydrometeorological dataset for the contiguous USA. UCAR/NCAR, Boulder, CO (2014)Google Scholar
- 32.Perrin, C., Michel, C., Andréassian, V.: Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 279(1–4), 275–289 (2003)CrossRefGoogle Scholar
- 33.Poerner, N., Schütze, H., Roth, B.: Evaluating neural network explanation methods using hybrid documents and morphosyntactic agreement. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 340–350 (2018)Google Scholar
- 34.Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)Google Scholar
- 35.Samaniego, L., et al.: Toward seamless hydrologic predictions across spatial scales. Hydrol. Earth Syst. Sci. 21(9), 4323–4346 (2017)CrossRefGoogle Scholar
- 36.Strobelt, H., Gehrmann, S., Pfister, H., Rush, A.M.: LSTMVis: a tool for visual analysis of hidden state dynamics in recurrent neural networks. IEEE Trans. Visual Comput. Graphics 24(1), 667–676 (2018)CrossRefGoogle Scholar
- 37.Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3319–3328. JMLR. org (2017)Google Scholar
- 38.Thielen, J., Bartholmes, J., Ramos, M.H., de Roo, A.: The European flood alert system – Part 1: concept and development. Hydrol. Earth Syst. Sci. Dis. 5(1), 257–287 (2008)CrossRefGoogle Scholar
- 39.Tieleman, T., Hinton, G.: Lecture 6.5 - RMSProp, COURSERA: Neural Networks for Machine Learning. Technical report (2012) Google Scholar
- 40.WMO, UNESCO (United Nations Educational, Scientific and Cultural Organization): International Glossary of Hydrology. No. 12, Geneva, Switzerland (1998)Google Scholar