Skin pH, Epidermal Barrier Function, Cleansers, and Skin Health

  • Sandy SkotnickiEmail author
Part of the Updates in Clinical Dermatology book series (UCD)


When managing patients with local wounds, it is imperative to consider the proper use of cleansers and treatments that do not compromise the acidic pH of the skin. This is an important matter to impart to students and patients alike. Cleansers should have a pH between 4.5 and 6, which is close to normal pH of the skin. Avoidance of soap or non-pH adjusted cleansers should be recommended as part of any treatment protocol for wound patients. The effects on skin pH should also be considered when using antibacterial substances or other wound treatments. Maintaining and repairing the skin barrier is the focus of wound healing and skin pH plays an integral role in this process.


Skin pH Skin cleansers Skin health 


  1. 1.
    Schade H, Marchionini A. Der Säuremantel der Haut nach Gaskettenmessngen. Klin Wochenschr. 1928;7:12–4.CrossRefGoogle Scholar
  2. 2.
    Hachem JP, Crumrine D, Fluhr J, Brown BE, Feingold KR, Elias PM. pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol. 2003;121:345–53.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hachem JP, Man MQ, Crumrine D, Uchida Y, Brown BE, Rogiers V, et al. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol. 2005;125:510–20.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jang H, Matsuda A, Jung K, et al. Skin pH is the master switch of kallikrein 5-mediated skin barrier destruction in a murine atopic dermatitis model. J Invest Dermatol. 2016;136:127–35.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Steinhoff M, Neisius U, Ikoma A, et al. Proteinase-activated receptor- 2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci. 2003;23:6176–80. 87 Ring J, Eberlein-K€onig B, Sch€.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Abels C, Masur C, Daehnhardt-Pfeiffer S, et al. 413 formulation with low pH decreases skin pH, restores disrupted epidermal barrier and improves lipid lamellae structure. J Invest Dermatol. 2017;137:S71.CrossRefGoogle Scholar
  7. 7.
    Segger D, Aßmus U, Brock M, et al. Multicenter study on measurement of the natural pH of the skin surface. Int J Cosmet Sci. 2008;30:75.CrossRefGoogle Scholar
  8. 8.
    Lambers H, Piessens S, Bloem A, et al. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28:359–70.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kleesz P, Darlenski R, Fluhr J. Full-body skin mapping for six biophysical parameters: baseline values at 16 anatomical sites in 125 human subjects. Skin Pharmacol Physiol. 2012;25:25–33.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Prescott SL, et al. World Allergy Organ J. 2017;10(1):29. Published online 2017 Aug 22.Google Scholar
  11. 11.
    Cork M, et al. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol. 2009;129:1892–908.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Walker MT, Green JE, Ferrie RP, Queener AM, Kaplan MH, Cook-Mills JM. Mechanism for initiation of food allergy: dependence on skin barrier mutations and environmental allergen costimulation. J Allergy Clin Immunol. 2018;141(5):1722–5.CrossRefGoogle Scholar
  13. 13.
    Covington AK, Bates RG, Durst RA. Definitions of pH scales, standard reference values, measurement of pH, and related terminology [PDF]. Pure Appl Chem. 1985;57(3):531–54.CrossRefGoogle Scholar
  14. 14.
    Slessarev E, Lin Y, Bingham N, et al. Water balance creates a threshold in soil pH at the global scale. Nature. 2016;540:567.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kulthanan, K, Nuchkull, P, Varothai, S. The pH of water from various sources: an overview for recommendation for patients with atopic dermatitis. Asia Pac Allergy. 2013;3(3):155–60.Google Scholar
  16. 16.
    U.S. Geological Survey. Water hardness and alkalinity. [Internet] [cited December 2018]. Available from:
  17. 17.
    Ewence A, Rumsby P, Rockett L, Davey A, Williams H, Danby S, Cork M. A review of skin irritation and tap water quality. [Internet] March 2011. [cited December 2018]. Available from:
  18. 18.
    Osborne DW. Hard water and skin irritation. J Am Acad Dermatol. 1987;16(6):1263–4.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    McNally NJ, et al. Atopic eczema and domestic water hardness. Lancet. 1998;352(9127):527–31.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nikolovski J, et al. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Invest Dermatol. 2008;128:1728–36.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Agren J, et al. Transepidermal water loss in infants born at 24 and 25 weeks of gestation. Acta Paediatr. 1998;87(11):1185–90.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Joseph N, Bourliere F, Molimard R. Titration curves of human epidermis in relation to age. In: Federation proceedings, vol. 16: Federation of American Societies of Experimental Biology 9650 Rockville Pike, Bethesda, MD 20814-3998. 1957; 202.Google Scholar
  23. 23.
    Choi E-H, Man M-Q, Xu P, et al. Stratum corneum acidification is impaired in moderately aged human and murine skin. J Invest Dermatol. 2007;127:2847–56.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Man M, Xin S, Song S, et al. Variation of skin surface pH, sebum content and stratum corneum hydration with age and gender in a large Chinese population. Skin Pharmacol Physiol. 2009;22:190–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schreml S, Zeller V, Meier RJ, et al. Impact of age and body site on adult female skin surface pH. Dermatology. 2012;224:66–71.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Luebberding S, Krueger N, Kerscher M. Age-related changes in male skin: quantitative evaluation of one hundred and fifty male subjects. Skin Pharmacol Physiol. 2014;27:9–17.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Levin J, Maibach H. Human skin buffering capacity: an overview. Skin Res Technol. 2008;14:121–6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Levin J, Maibach H. pH buffering considerations in mature skin. Cosmet Toiletries. 2011;126:422–8.Google Scholar
  29. 29.
    Luebberding S, Krueger N, Kerscher M. Age-related changes in skin barrier function–quantitative evaluation of 150 female subjects. Int J Cosmet Sci. 2013;35:183–90.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ali SM, Yosipovitch G. Skin pH: from basic science to basic skincare. Acta Derm Venereol. 2013;93:261–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Burckhardt W. Protective function of the skin against the external environment, with special reference to its buffer capacity against alkalis and acids. Schweiz Med Wochenschr. 1957;87:1525–9.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Lotmar R. Potentiometric titration as a new method for determining the buffer capacity of the human skin. Arch Klin Exp Dermatol. 1964;219:610.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Laufer A, Dikstein S. Objective measurement and self-assessment of skin-care treatments. Cosmet Toiletries. 1996;111:91–8.Google Scholar
  34. 34.
    Thune P, Nilsen T, Hanstad IK, Gustavsen T, Lövig Dahl H. The water barrier function of the skin in relation to the water content of stratum corneum, pH and skin lipids. The effect of alkaline soap and syndet on dry skin in elderly, nonatopic. Acta Derm Venereol. 1988;68(4):277.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ayer J, Maibach HI. Human skin buffering capacity against a reference base sodium hydroxide: in vitro model. Cutan Ocul Toxicol. 2008;27:271–81.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin: theory and in vitro experimental measurement. AICHE J. 1975;21:985–96.CrossRefGoogle Scholar
  37. 37.
    Elias PM. Epidermal lipids, barrier function, and desquamation. J Invest Dermatol. 1983;80(Suppl):44s–9s.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rawlings AV, Scott IR, Harding CR, Bowser PA. Stratum corneum moisturization at the molecular level. J Invest Dermatol. 1994;103:731–41.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Elias PM, Wakefield JS. Therapeutic implications of a barrier-based pathogenesis of atopic dermatitis. Clin Rev Allergy Immunol. 2011;41:282–95.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010;126:1184–90.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Margolis DV, Apter AJ, Gupta J, et al. The persistence of atopic dermatitis and filaggrin [FLG] mutations in a US longitudinal cohort. J Allergy Clin Immunol. 2012;130:912–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kuo I, Yoshida T, De Benedetto A, Beck LA. The cutaneous innate immune response in patients with atopic dermatitis. J Allergy Clin Immunol. 2013;131:266–78.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    McAleer MA, Irvine AD. The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol. 2013;131:280–91.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bouwstra JA, Gooris GS, Dubbelaar FE, Weerheim AM, Ponec M. pH, cholesterol sulfate, and fatty acids affect the stratum corneum lipid organization. J Invest Dermatol. 1998;3:69–74.CrossRefGoogle Scholar
  45. 45.
    Rippke F, Schreiner V, Schwanitz HJ. The acidic milieu of the horny layer: new findings on the physiology and pathophysiology of skin pH. Am J Clin Dermatol. 2002;3:261–72.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mauro T, Holleran WM, Grayson S, Gao WN, Man MQ, Kriehuber E, et al. Barrier recovery is impeded at neutral pH, independent of ionic effects: implications for extracellular lipid processing. Arch Dermatol Res. 1998;290:215–22.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wepf R, Richter T, Biel S, Schlüter H, Fischer F, Wittern KP, Hohenberg H. Multimodal imaging of skin structures: imagining imaging of the skin. In: Wilhelm KP, Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: skin imaging and analysis. New York: Informa Healthcare; 2007.Google Scholar
  48. 48.
    Chapman SJ, Walsh A. Desmosomes, corneosomes and desquamation. An ultrastructural study of adult pig epidermis. Arch Dermatol Res. 1990;282:304–10.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rawlings AV. Recent advances in skin ‘barrier’ research. J Pharm Pharmacol. 2010;62:671–7.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bissett DL, McBride JF, Patrick LF. Role of protein and calcium in stratum corneum cell cohesion. Arch Dermatol Res. 1987;279:184–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Borgono CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, Sotiropoulou G, Diamandis EP. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem. 2007;282:3640–52.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rawlings AV. Stratum Corneum proteases and dry skin conditions. Cell Tissue Res. 2013;351(2):217–35.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Egelrud T, Lundström A. A chymotrypsin-like proteinase that may be involved in desquamation in plantar stratum corneum. Arch Dermatol Res. 1991;283:108–12.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Suzuki Y, Nomura J, Hori J, Koyama J, Takahashi M, Horii I. Detection and characterization of endogenous protease associated with desquamation of stratum corneum. Arch Dermatol Res. 1993;285:372–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ekholm E, Egelrud T. Stratum corneum chymotryptic enzyme in psoriasis. Arch Dermatol Res. 1999;291:195–200.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Grice E, Segre J. The skin microbiome. Nature reviews in. Microbiology. 2011;9:244–53.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Roth RR, James WD. Microbial ecology of the skin. Annu Rev Microbiol. 1988;42:441–64.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Elias PM. The skin barrier as an innate immune element. Semin Immunopathol. 2007;29:3–14.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gribbon EM, Cunliffe WJ, Holland KT. Interaction of Propionibacterium acnes with skin lipids in vitro. J Gen Microbiol. 1993;139(8):1745.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hentges DJ. The anaerobic microflora of the human body. Clin Infect Dis. 1993;16:S175–80.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Dethlefsen L, Relman DA. Microbes and Health Sackler Colloquium: incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA. 2010;108 Suppl 1:4554. doi:
  62. 62.
    Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6:e280.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Nerandzic MM, Sankar C, Setlow P, et al. A cumulative spore killing approach: synergistic sporicidal activity of dilute peracetic acid and ethanol at low pH against Clostridium difficile and Bacillus subtilis spores. Open Forum Infect Dis. 2016;3:ovf206.CrossRefGoogle Scholar
  64. 64.
    Sasai-Takedatsu M, Kojima T, Yamamoto A, et al. Reduction of Staphylococcus aureus in atopic skin lesions with acid electrolytic water-a new therapeutic strategy for atopic dermatitis. Allergy. 1997;52(10):1012–6.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Malik E, Dennison SR, Harris F, et al. pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals. 2016;9:67.CrossRefGoogle Scholar
  66. 66.
    Nakatsuji T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378):eaah4680.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Nagoba BS, Suryawanshi NM, Wadher B, et al. Acidic environment and wound healing: a review. Wounds. 2015;27:5–11.Google Scholar
  68. 68.
    Elias PM, Ansel JC, La Donna CW, et al. Signaling networks in barrier homeostasis: the mystery widens. Arch Dermatol. 1996;132:1505–6.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tezuka T, Qing J, Saheki M, et al. Terminal differentiation of facial epidermis of the aged: immunohistochemical studies. Dermatology. 1994;188:21–4.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Czarnowicki T, Krueger JG, Guttman-Yassky E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J Allergy Clin Immunol. 2017;139:1723–34.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Xu S, Immaneni S, Hazen GB, et al. Cost-effectiveness of prophylactic moisturization for atopic dermatitis. JAMA Pediatr. 2017;171:e163909.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Dykes P. Surfactants and the skin. Int J Cosmet Sci. 1998;20:53–61.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Fluhr JW, Kao J, Jain M, Ahn SK, Feingold KR, Elias PM. Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol. 2001;117:52–8.CrossRefGoogle Scholar
  74. 74.
    Baranda L, González-Amaro R, Torres-Alvarez B, Alvarez C, Ramírez V. Correlation between pH and irritant effect of cleansers marketed for dry skin. Int J Dermatol. 2002;41:494–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.St. Michael’s HospitalDepartment of Occupational and Environmental HealthTorontoCanada

Personalised recommendations