Deep Brain and Vagal Nerve Stimulation

  • Sungjin A. SongEmail author
  • Pawan Mathew
  • Farid Hamzei-Sichani
  • Phillip C. Song


Deep brain stimulation (DBS) and vagal nerve stimulation (VNS) are forms of electrical neuromodulation that elicit a downstream neurological change to the brainstem and midbrain via central and peripheral approaches. Despite the critical role of the brainstem/midbrain and the vagus nerve in regulating voice and swallowing function, there has been little systemic study on the effects of neurostimulation on the larynx.

Vagal nerve stimulation has shown adverse effects on laryngeal function ranging from temporary movement problems that affect cough, voice, and swallowing to permanent vocal fold paralysis. Rates of voice and swallowing problems after VNS implantation are imprecise but in small cases series reported to be from 25% to 50%.

Deep brain stimulation consequences are dependent on the clinical indication, target, and CNS placement. DBS for treatment of essential tremor has demonstrated to consistently improve vocal tremor. However, current targets for DBS with Parkinson disease (PD) and generalized dystonia do not seem to improve voice and speech consistently. Clinical trials for DBS treatment in spasmodic dysphonia are underway. These devices have shown both beneficial and negative effects on voice and swallowing, and further study is warranted.


Deep brain stimulation Voice Vagal nerve stimulation Swallowing Neurostimulation 


  1. 1.
    Ogbonnaya S, Kaliaperumal C. Vagal nerve stimulator: evolving trends. J Nat Sci Biol Med. 2013;4(1):8–13.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zabara J. Peripheral control of hypersynchronous discharge in epilepsy. Electroencephalography. 1985;61:S162.Google Scholar
  3. 3.
    Edwards CA, Kouzani A, Lee KH, Ross EK. Neurostimulation devices for the treatment of neurologic disorders. Mayo Clin Proc. 2017;92(9):1427–44.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res. 2018;11:203–13.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ramsay RE, Uthman BM, Augustinsson LE, Upton AR, Naritoku D, Willis J, et al. Vagus nerve stimulation for treatment of partial seizures: 2. Safety, side effects, and tolerability. First International Vagus Nerve Stimulation Study Group. Epilepsia. 1994;35(3):627–36.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology. 2002;59(6 Suppl 4):S3–14.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bridgers SL, Spencer SS, Spencer DD, Sasaki CT. A cerebral effect of carotid sinus stimulation. Observation during intraoperative electroencephalographic monitoring. Arch Neurol. 1985;42(6):574–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chase MH, Sterman MB, Clemente CD. Cortical and subcortical patterns of response to afferent vagal stimulation. Exp Neurol. 1966;16(1):36–49.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chase MH, Nakamura Y, Clemente CD, Sterman MB. Afferent vagal stimulation: neurographic correlates of induced EEG synchronization and desynchronization. Brain Res. 1967;5(2):236–49.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Magnes J, Moruzzi G, Pompeiano O. Synchronization of the EEG produced by low frequency electrical stimulation of the region of the solitary tract. Arch Ital Biol. 1961;99:33–67.Google Scholar
  11. 11.
    Garnett ES, Nahmias C, Scheffel A, Firnau G, Upton AR. Regional cerebral blood flow in man manipulated by direct vagal stimulation. Pacing Clin Electrophysiol. 1992;15(10 Pt 2):1579–80.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ko D, Heck C, Grafton S, Apuzzo ML, Couldwell WT, Chen T, et al. Vagus nerve stimulation activates central nervous system structures in epileptic patients during PET H2(15)O blood flow imaging. Neurosurgery. 1996;39(2):426–30; discussion 430–1CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Herbert H, Saper CB. Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. J Comp Neurol. 1992;315(1):34–52.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Carpenter LL, Moreno FA, Kling MA, Anderson GM, Regenold WT, Labiner DM, et al. Effect of vagus nerve stimulation on cerebrospinal fluid monoamine metabolites, norepinephrine, and gamma-aminobutyric acid concentrations in depressed patients. Biol Psychiatry. 2004;56(6):418–26.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Marrosu F, Serra A, Maleci A, Puligheddu M, Biggio G, Piga M. Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy. Epilepsy Res. 2003;55(1–2):59–70.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dantzer R, Konsman JP, Bluthe RM, Kelley KW. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci. 2000;85(1–3):60–5.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, et al. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia. 2002;43(Suppl 5):30–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hosoi T, Okuma Y, Nomura Y. Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am J Physiol Regul Integr Comp Physiol. 2000;279(1):R141–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Giordano F, Zicca A, Barba C, Guerrini R, Genitori L. Vagus nerve stimulation: surgical technique of implantation and revision and related morbidity. Epilepsia. 2017;58(Suppl 1):85–90.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Al Omari AI, Alzoubi FQ, Alsalem MM, Aburahma SK, Mardini DT, Castellanos PF. The vagal nerve stimulation outcome, and laryngeal effect: otolaryngologists roles and perspective. Am J Otolaryngol. 2017;38(4):408–13.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998;51(1):48–55.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zalvan C, Sulica L, Wolf S, Cohen J, Gonzalez-Yanes O, Blitzer A. Laryngopharyngeal dysfunction from the implant vagal nerve stimulator. Laryngoscope. 2003;113(2):221–5.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ghanem T, Early SV. Vagal nerve stimulator implantation: an otolaryngologist’s perspective. Otolaryngol Head Neck Surg. 2006;135(1):46–51.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kalkanis JG, Krishna P, Espinosa JA, Naritoku DK. Self-inflicted vocal cord paralysis in patients with vagus nerve stimulators. Report of two cases. J Neurosurg. 2002;96(5):949–51.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kahlow H, Olivecrona M. Complications of vagal nerve stimulation for drug-resistant epilepsy: a single center longitudinal study of 143 patients. Seizure. 2013;22(10):827–33.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Charous SJ, Kempster G, Manders E, Ristanovic R. The effect of vagal nerve stimulation on voice. Laryngoscope. 2001;111(11 Pt 1):2028–31.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Felisati G, Gardella E, Schiavo P, Saibene AM, Pipolo C, Bertazzoli M, et al. Endoscopic laryngeal patterns in vagus nerve stimulation therapy for drug-resistant epilepsy. Eur Arch Otorhinolaryngol. 2014;271(1):117–23.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ardesch JJ, Sikken JR, Veltink PH, van der Aa HE, Hageman G, Buschman HP. Vagus nerve stimulation for epilepsy activates the vocal folds maximally at therapeutic levels. Epilepsy Res. 2010;89(2–3):227–31.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shaw GY, Sechtem P, Searl J, Dowdy ES. Predictors of laryngeal complications in patients implanted with the Cyberonics vagal nerve stimulator. Ann Otol Rhinol Laryngol. 2006;115(4):260–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lundgren J, Ekberg O, Olsson R. Aspiration: a potential complication to vagus nerve stimulation. Epilepsia. 1998;39(9):998–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schallert G, Foster J, Lindquist N, Murphy JV. Chronic stimulation of the left vagal nerve in children: effect on swallowing. Epilepsia. 1998;39(10):1113–4.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg. 1996;84(2):203–14.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Taha JM, Janszen MA, Favre J. Thalamic deep brain stimulation for the treatment of head, voice, and bilateral limb tremor. J Neurosurg. 1999;91(1):68–72.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    D’Alatri L, Paludetti G, Contarino MF, Galla S, Marchese MR, Bentivoglio AR. Effects of bilateral subthalamic nucleus stimulation and medication on parkinsonian speech impairment. J Voice. 2008;22(3):365–72.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hammer MJ, Barlow SM, Lyons KE, Pahwa R. Subthalamic nucleus deep brain stimulation changes speech respiratory and laryngeal control in Parkinson’s disease. J Neurol. 2010;257(10):1692–702.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kundu B, Schrock L, Davis T, House PA. Thalamic deep brain stimulation for essential tremor also reduces voice tremor. Neuromodulation 2017. [Epub ahead of print].
  37. 37.
    Albanese A, Barnes MP, Bhatia KP, Fernandez-Alvarez E, Filippini G, Gasser T, et al. A systematic review on the diagnosis and treatment of primary (idiopathic) dystonia and dystonia plus syndromes: report of an EFNS/MDS-ES Task Force. Eur J Neurol. 2006;13(5):433–44.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F, Westenberg H, et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry. 2010;67(10):1061–8.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Thevathasan W, Gregory R. Deep brain stimulation for movement disorders. Pract Neurol. 2010;10(1):16–26.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol. 2004;115(6):1239–48.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Benabid AL, Benazzous A, Pollak P. Mechanisms of deep brain stimulation. Mov Disord. 2002;17(Suppl 3):S73–4.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vitek JL. Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord. 2002;17(Suppl 3):S69–72.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Anderson ME, Postupna N, Ruffo M. Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophysiol. 2003;89(2):1150–60.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hashimoto T, Elder CM, Vitek JL. A template subtraction method for stimulus artifact removal in high-frequency deep brain stimulation. J Neurosci Methods. 2002;113(2):181–6.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Windels F, Bruet N, Poupard A, Urbain N, Chouvet G, Feuerstein C, et al. Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci. 2000;12(11):4141–6.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci. 2003;23(5):1916–23.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Perlmutter JS, Mink JW. Deep brain stimulation. Annu Rev Neurosci. 2006;29:229–57.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Arantes PR, Cardoso EF, Barreiros MA, Teixeira MJ, Goncalves MR, Barbosa ER, et al. Performing functional magnetic resonance imaging in patients with Parkinson’s disease treated with deep brain stimulation. Mov Disord. 2006;21(8):1154–62.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Phillips MD, Baker KB, Lowe MJ, Tkach JA, Cooper SE, Kopell BH, et al. Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus--initial experience. Radiology. 2006;239(1):209–16.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Trost M, Su S, Su P, Yen RF, Tseng HM, Barnes A, et al. Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage. 2006;31(1):301–7.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, et al. Network modulation in the treatment of Parkinson’s disease. Brain. 2006;129(Pt 10):2667–78.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    McIntyre CC, Hahn PJ. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis. 2010;38(3):329–37.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Carpenter MA, Pahwa R, Miyawaki KL, Wilkinson SB, Searl JP, Koller WC. Reduction in voice tremor under thalamic stimulation. Neurology. 1998;50(3):796–8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yoon MS, Munz M, Sataloff RT, Spiegel JR, Heuer RJ. Vocal tremor reduction with deep brain stimulation. Stereotact Funct Neurosurg. 1999;72(2–4):241–4.CrossRefGoogle Scholar
  55. 55.
    Hagglund P, Sandstrom L, Blomstedt P, Karlsson F. Voice tremor in patients with essential tremor: effects of deep brain stimulation of caudal Zona Incerta. J Voice. 2016;30(2):228–33.CrossRefGoogle Scholar
  56. 56.
    Obwegeser AA, Uitti RJ, Turk MF, Strongosky AJ, Wharen RE. Thalamic stimulation for the treatment of midline tremors in essential tremor patients. Neurology. 2000;54(12):2342–4.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Deuschl G, Raethjen J, Hellriegel H, Elble R. Treatment of patients with essential tremor. Lancet Neurol. 2011;10(2):148–61.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sydow O, Thobois S, Alesch F, Speelman JD. Multicentre European study of thalamic stimulation in essential tremor: a six year follow up. J Neurol Neurosurg Psychiatry. 2003;74(10):1387–91.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Moringlane JR, Putzer M, Barry WJ. Bilateral high-frequency electrical impulses to the thalamus reduce voice tremor: acoustic and electroglottographic analysis. A case report. Eur Arch Otorhinolaryngol. 2004;261(6):334–6.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Poologaindran A, Ivanishvili Z, Morrison MD, Rammage LA, Sandhu MK, Polyhronopoulos NE, et al. The effect of unilateral thalamic deep brain stimulation on the vocal dysfunction in a patient with spasmodic dysphonia: interrogating cerebellar and pallidal neural circuits. J Neurosurg. 2018;128(2):575–82.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Risch V, Staiger A, Ziegler W, Ott K, Scholderle T, Pelykh O, et al. How does GPi-DBS affect speech in primary dystonia? Brain Stimul. 2015;8(5):875–80.CrossRefGoogle Scholar
  62. 62.
    Vidailhet M, Vercueil L, Houeto JL, Krystkowiak P, Benabid AL, Cornu P, et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med. 2005;352(5):459–67.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gentil M, Chauvin P, Pinto S, Pollak P, Benabid AL. Effect of bilateral stimulation of the subthalamic nucleus on parkinsonian voice. Brain Lang. 2001;78(2):233–40.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Putzer M, Barry WJ, Moringlane JR. Effect of bilateral stimulation of the subthalamic nucleus on different speech subsystems in patients with Parkinson’s disease. Clin Linguist Phon. 2008;22(12):957–73.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Karlsson F, Olofsson K, Blomstedt P, Linder J, van Doorn J. Pitch variability in patients with Parkinson’s disease: effects of deep brain stimulation of caudal zona incerta and subthalamic nucleus. J Speech Lang Hear Res. 2013;56(1):150–8.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Karlsson F, Malinova E, Olofsson K, Blomstedt P, Linder J, Nordh E. Voice tremor outcomes of subthalamic nucleus and zona incerta deep brain stimulation in patients with Parkinson disease. J Voice 2018. [Epub ahead of print].
  67. 67.
    Lundgren S, Saeys T, Karlsson F, Olofsson K, Blomstedt P, Linder J, et al. Deep brain stimulation of caudal zona incerta and subthalamic nucleus in patients with Parkinson’s disease: effects on voice intensity. Parkinsons Dis. 2011;2011:658956.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Dromey C, Kumar R, Lang AE, Lozano AM. An investigation of the effects of subthalamic nucleus stimulation on acoustic measures of voice. Mov Disord. 2000;15(6):1132–8.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tsuboi T, Watanabe H, Tanaka Y, Ohdake R, Yoneyama N, Hara K, et al. Distinct phenotypes of speech and voice disorders in Parkinson’s disease after subthalamic nucleus deep brain stimulation. J Neurol Neurosurg Psychiatry. 2015;86(8):856–64.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Klostermann F, Ehlen F, Vesper J, Nubel K, Gross M, Marzinzik F, et al. Effects of subthalamic deep brain stimulation on dysarthrophonia in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2008;79(5):522–9.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Aldridge D, Theodoros D, Angwin A, Vogel AP. Speech outcomes in Parkinson’s disease after subthalamic nucleus deep brain stimulation: a systematic review. Parkinsonism Relat Disord. 2016;33:3–11.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Tanaka Y, Tsuboi T, Watanabe H, Kajita Y, Fujimoto Y, Ohdake R, et al. Voice features of Parkinson’s disease patients with subthalamic nucleus deep brain stimulation. J Neurol. 2015;262(5):1173–81.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Putzer M, Barry WJ, Moringlane JR, Fuss G, Spiegel J, Dillmann U, et al. Effect of deep brain stimulation on glottal phonation in patients with Parkinson’s disease and multiple sclerosis. Folia Phoniatr Logop. 2003;55(5):220–32.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Putzer M, Wokurek W, Moringlane JR. Evaluation of phonatory behavior and voice quality in patients with multiple sclerosis treated with deep brain stimulation. J Voice. 2017;31(4):483–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Putzer M, Barry WJ, Moringlane JR. Effect of deep brain stimulation on different speech subsystems in patients with multiple sclerosis. J Voice. 2007;21(6):741–53.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lengerer S, Kipping J, Rommel N, Weiss D, Breit S, Gasser T, et al. Deep-brain-stimulation does not impair deglutition in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(7):847–53.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kitashima A, Umemoto G, Tsuboi Y, Higuchi MA, Baba Y, Kikuta T. Effects of subthalamic nucleus deep brain stimulation on the swallowing function of patients with Parkinson’s disease. Parkinsonism Relat Disord. 2013;19(4):480–2.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Olchik MR, Ghisi M, Ayres A, Schuh AFS, Oppitz PP, Rieder CRM. The impact of deep brain stimulation on the quality of life and swallowing in individuals with Parkinson’s disease. Int Arch Otorhinolaryngol. 2018;22(2):125–9.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Sundstedt S, Olofsson K, van Doorn J, Linder J, Nordh E, Blomstedt P. Swallowing function in Parkinson’s patients following zona incerta deep brain stimulation. Acta Neurol Scand. 2012;126(5):350–6.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Sundstedt S, Nordh E, Linder J, Hedstrom J, Finizia C, Olofsson K. Swallowing quality of life after zona incerta deep brain stimulation. Ann Otol Rhinol Laryngol. 2017;126(2):110–6.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Sundstedt S, Holmen L, Rova E, Linder J, Nordh E, Olofsson K. Swallowing safety in Parkinson’s disease after zona incerta deep brain stimulation. Brain Behav. 2017;7(6):e00709.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Troche MS, Brandimore AE, Foote KD, Morishita T, Chen D, Hegland KW, et al. Swallowing outcomes following unilateral STN vs. GPi surgery: a retrospective analysis. Dysphagia. 2014;29(4):425–31.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kulneff L, Sundstedt S, Olofsson K, van Doorn J, Linder J, Nordh E, et al. Deep brain stimulation - effects on swallowing function in Parkinson’s disease. Acta Neurol Scand. 2013;127(5):329–36.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Silbergleit AK, LeWitt P, Junn F, Schultz LR, Collins D, Beardsley T, et al. Comparison of dysphagia before and after deep brain stimulation in Parkinson’s disease. Mov Disord. 2012;27(14):1763–8.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Xie T, Bloom L, Padmanaban M, Bertacchi B, Kang W, MacCracken E, et al. Long-term effect of low frequency stimulation of STN on dysphagia, freezing of gait and other motor symptoms in PD. J Neurol Neurosurg Psychiatry. 2018;89(9):989–94.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sungjin A. Song
    • 1
    • 2
    Email author
  • Pawan Mathew
    • 3
  • Farid Hamzei-Sichani
    • 4
  • Phillip C. Song
    • 1
    • 2
  1. 1.Department of OtolaryngologyMassachusetts Eye and Ear InfirmaryBostonUSA
  2. 2.Department of OtolaryngologyHarvard Medical SchoolBostonUSA
  3. 3.UMass Memorial Medical Center, University of Massachusetts Medical SchoolWorcesterUSA
  4. 4.Department of Neurological SurgeryUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations