Iatrogenic Injury

  • Randal C. PanielloEmail author


Injuries to the vagus and glossopharyngeal nerves and their branches are usually iatrogenic. In this chapter, etiologies of these injuries are reviewed, along with the mechanisms and physiology of nerve injury and recovery at the cellular level. The problems of nerve regeneration as it pertains to the recurrent laryngeal nerve, which carries both adductor and abductor fibers to the larynx, are described. Clinical implications of these injuries are reviewed, and current diagnostic procedures and principles of treatment of these problems are summarized. New treatment ideas that are currently under investigation are also described.


Vocal fold paralysis Cricopharyngeal achalasia Laryngeal reinnervation Axonal regeneration Synkinesis Neurotrophic factors 


  1. 1.
    Rosenthal LHS, Benninger MS, Deeb RH. Vocal fold immobility: a longitudinal analysis of etiology over 20 years. Laryngoscope. 2007;117(10):1864–70.CrossRefGoogle Scholar
  2. 2.
    Takano S, Nito T, Tamaruya N, Kimura M, Tayama N. Single institutional analysis of trends over 45 years in etiology of vocal fold paralysis. Auris Nasus Larynx. 2012;39(6):597–600.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Spataro EA, Grindler DJ, Paniello RC. Etiology and time to presentation of unilateral vocal fold paralysis. Otolaryngol Head Neck Surg. 2014;151(2):286–94.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hillel AD, Benninger M, Blitzer A, Crumley R, Flint P, Kashima HK, et al. Evaluation and management of bilateral vocal cord immobility. Otolaryngol Head Neck Surg. 1999;121(6):760–5.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bauer E, Paniello RC. Data compiled from database at Washington University St. Louis MO, USA. 2019.Google Scholar
  6. 6.
    Curry AL, Young WF. Preoperative laryngoscopic examination in patients undergoing repeat anterior cervical discectomy and fusion. Int J Spine Surg. 2013;7:e81–3.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Farrag TY, Samlan RA, Lin FR, Tufano RP. The utility of evaluating true vocal fold motion before thyroid surgery. Laryngoscope. 2006;116(2):235–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Paniello RC, Martin-Bredahl KJ, Henkener LJ, Riew KD. Preoperative laryngeal nerve screening for revision anterior cervical spine procedures. Ann Otol Rhinol Laryngol. 2008;117(8):594–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Randolph GW, Kamani D. The importance of preoperative laryngoscopy in patients undergoing thyroidectomy: voice, vocal cord function, and the preoperative detection of invasive thyroid malignancy. Surgery. 2006;139(3):357–62.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Steurer M, Passler C, Denk DM, Schneider B, Niederle B, Bigenzahn W. Advantages of recurrent laryngeal nerve identification in thyroidectomy and parathyroidectomy and the importance of preoperative and postoperative laryngoscopic examination in more than 1000 nerves at risk. Laryngoscope. 2002;112(1):124–33.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Caroline M, Joglekar SS, Mandel SM, Sataloff RT, Heman-Ackah YD. The predictors of postoperative laryngeal nerve paresis in patients undergoing thyroid surgery: a pilot study. J Voice. 2012;26(2):262–6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Naytah M, Ibrahim I, da Silva S. Importance of incorporating intraoperative neuromonitoring of the external branch of the superior laryngeal nerve in thyroidectomy: a review and meta-analysis study. Head Neck. 2019;41(6):2034–41.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Buchholz DW. Oropharyngeal dysphagia due to iatrogenic neurological dysfunction. Dysphagia. 1995;10(4):248–54.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sasaki CT, Kim YH, Sims HS, Czibulka A. Motor innervation of the human cricopharyngeus muscle. Ann Otol Rhinol Laryngol. 1999;108(12):1132–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Halum SL, Merati AL, Kulpa JI, Danielson SK, Jaradeh SS, Toohill RJ. Laryngoscope. 2003;113(6):981–4.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sunderland S. Nerves and nerve injuries, 2nd ed. Foreword by Walshe F. Edinburgh. New York: Churchill Livingstone; 1978.Google Scholar
  17. 17.
    Tirelli G, Camilot D, Bonini P, Del Piero GC, Biasotto M, Quatela E. Harmonic scalpel and electrothermal bipolar vessel sealing system in head and neck surgery: a prospective study on tissue heating and histological damage on nerves. Ann Otol Rhinol Laryngol. 2015;124(11):852–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Garas G, Okabayashi K, Ashrafian H, Shetty K, Palazzo F, Tolley N, Darzi A, Athanasiou T, Zacharakis E. Which hemostatic device in thyroid surgery? A network meta-analysis of surgical technologies. Thyroid. 2013;23(9):1138–50.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yang X, Cao J, Yan Y, Liu F, Li T, Han L, Ye C, Zheng S, Wang S, Ye Y, Jiang K. Comparison of the safety of electrotome, Harmonic scalpel, and LigaSure for management of thyroid surgery. Head Neck. 2017;39(6):1078–85.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hammad AY, Deniwar A, Al-Qurayshi Z, Mohamed HE, Rizwan A, Kandil E. A prospective study comparing the efficacy and surgical outcomes of harmonic focus scalpel versus ligasure small jaw in thyroid and parathyroid surgery. Surg Innov. 2016;23(5):486–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    De Palma M, Rosato L, Zingone F, Orlando G, Antonino A, Vitale M, Puzziello A. Post-thyroidectomy complications. The role of the device: bipolar vs ultrasonic device: collection of data from 1,846 consecutive patients undergoing thyroidectomy. Am J Surg. 2016;212(1):116–21.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dellon AL, Mackinnon SE. Basic scientific and clinical applications of peripheral nerve regeneration. Surg Annu. 1988;20:59–100.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Caillaud M, Richard L, Vallat JM, Desmoulière A, Billet F. Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res. 2019;14(1):24–33.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med. 2005;11(5):572–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Eddleman CS, Ballinger ML, Smyers ME, Fishman HM, Bittner GD. Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury. J Neurosci. 1998;18(11):4029–41.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang JT, Medress ZA, Barres BA. Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol. 2012;196(1):7–18.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gacek RR, Malmgren LT, Lyon MJ. Localization of adductor and abductor motor nerve fibers to the larynx. Ann Otol Rhinol Laryngol. 1977;86(6 Pt 1):771–6.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Flint PW, Downs DH, Coltrera MD. Laryngeal synkinesis following reinnervation in the rat. Neuroanatomic and physiologic study using retrograde fluorescent tracers and electromyography. Ann Otol Rhinol Laryngol. 1991;100(10):797–806.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Paniello RC, West SE. Laryngeal adductory pressure as a measure of post-reinnervation synkinesis. Ann Otol Rhinol Laryngol. 2000;109(5):447–51.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Paniello RC, Rich JT, Debnath NL. Laryngeal adductor function in experimental models of recurrent laryngeal nerve injury. Laryngoscope. 2015;125(2):E67–72.CrossRefGoogle Scholar
  31. 31.
    Paniello RC. Synkinesis following recurrent laryngeal nerve injury: a computer simulation. Laryngoscope. 2016;126(7):1600–5.CrossRefGoogle Scholar
  32. 32.
    Ramon y Cajal S. In: May RM, editor. Degeneration and regeneration of the nervous system. New York: Oxford University Press; 1928.Google Scholar
  33. 33.
    Ghergherehchi CL, Bittner GD, Hastings RL, Mikesh M, Riley DC, Trevino RC, et al. Effects of extracellular calcium and surgical techniques on restoration of axonal continuity by polyethylene glycol fusion following complete cut or crush severance of rat sciatic nerves. J Neurosci Res. 2016;94(3):231–45.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Paniello RC, Park AM, Bhatt N, Al-Lozi M. Recurrent laryngeal nerve recovery patterns assessed by serial electromyography. Laryngoscope. 2016;126(3):651–6.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wu YZ, Crumley RL, Armstrong WB, Caiozzo VJ. New perspectives about human laryngeal muscle: single-fiber analyses and interspecies comparisons. Arch Otolaryngol Head Neck Surg. 2000;126(7):857–64.CrossRefGoogle Scholar
  36. 36.
    Rhee HS, Hoh JF. Immunohistochemical analysis of myosin heavy chain expression in laryngeal muscles of the rabbit, cat, and baboon. J Histochem Cytochem. 2008;56(10):929–50.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hoh JF. Laryngeal muscle fibre types. Acta Physiol Scand. 2005;183(2):133–49.CrossRefGoogle Scholar
  38. 38.
    Li ZB, Lehar M, Nakagawa H, Hoh JF, Flint PW. Differential expression of myosin heavy chain isoforms between abductor and adductor muscles in the human larynx. Otolaryngol Head Neck Surg. 2004;130(2):217–22.CrossRefGoogle Scholar
  39. 39.
    Qiu X, Chen D, Li M, Gao Y, Liu F, Zheng H, Chen S. Transition of myosin heavy chain isoforms in human laryngeal abductors following denervation. Eur Arch Otorhinolaryngol. 2015;272(10):2915–23.CrossRefGoogle Scholar
  40. 40.
    Shiotani A, Westra WH, Flint PW. Myosin heavy chain composition in human laryngeal muscles. Laryngoscope. 1999;109(9):1521–4.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Toniolo L, Macchi V, Porzionato A, Paoli A, Marchese-Ragona R, De Caro R, Reggiani C. Myosin heavy chain isoforms in human laryngeal muscles: an expression study based on gel electrophoresis. Int J Mol Med. 2008;22(3):375–9.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Asanau A, Timoshenko AP, Prades JM, Galusca B, Martin C, Féasson L. Posterior cricoarytenoid bellies: relationship between their function and histology. J Voice. 2011;25:e67–73.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Horton MJ, Rosen C, Close JM, Sciote JJ. Quantification of myosin heavy chain RNA in human laryngeal muscles: differential expression in the vertical and horizontal posterior cricoarytenoid and thyroarytenoid. Laryngoscope. 2008;118(3):472–7.CrossRefGoogle Scholar
  44. 44.
    Bergrin M, Bicer S, Lucas CA, Reiser PJ. Three-dimensional compartmentalization of myosin heavy chain and myosin light chain isoforms in dog thyroarytenoid muscle. Am J Physiol Cell Physiol. 2006;290(5):C1446–58.CrossRefGoogle Scholar
  45. 45.
    Buller AJ, Eccles JC, Eccles RM. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol. 1960;150:417–39.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rhee HS, Lucas CA, Hoh JF. Fiber types in rat laryngeal muscles and their transformations after denervation and reinnervation. J Histochem Cytochem. 2004;52(5):581–90.CrossRefGoogle Scholar
  47. 47.
    Shiotani A, Nakagawa H, Flint PW. Modulation of myosin heavy chains in rat laryngeal muscle. Laryngoscope. 2001;111(3):472–7.CrossRefGoogle Scholar
  48. 48.
    Kingham PJ, Birchall MA, Burt R, Jones A, Terenghi G. Reinnervation of laryngeal muscles: a study of changes in myosin heavy chain expression. Muscle Nerve. 2005;32(6):761–6.CrossRefGoogle Scholar
  49. 49.
    Paniello RC, Lee P, West SE. Laryngeal reinnervation with the hypoglossal nerve. I. Physiology, histochemistry, electromyography, and retrograde labeling in the canine model. Ann Otol Rhinol Laryngol. 2001;110(6):532–42.CrossRefGoogle Scholar
  50. 50.
    Shiotani A, Flint PW. Myosin heavy chain composition in rat laryngeal muscles after denervation. Laryngoscope. 1998;108(8 Pt 1):1225–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    DelGaudio JM, Sciote JJ. Changes in myosin expression in denervated laryngeal muscle. Ann Otol Rhinol Laryngol. 1997;106(12):1076–81.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kano S, Horowitz JB, Sasaki CT. Posterior cricoarytenoid muscle denervation. Arch Otolaryngol Head Neck Surg. 1991;117(9):1019–20.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Miyamaru S, Kumai Y, Ito T, Yumoto E. Effects of long-term denervation on the rat thyroarytenoid muscle. Laryngoscope. 2008;118(7):1318–23.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Johns MM, Urbanchek M, Chepeha DB, Kuzon WM Jr, Hogikyan ND. Thyroarytenoid muscle maintains normal contractile force in chronic vocal fold immobility. Laryngoscope. 2001;111(12):2152–6.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Shindo ML, Herzon GD, Hanson DG, Cain DJ, Sahgal V. Effects of denervation on laryngeal muscles: a canine model. Laryngoscope. 1992;102(6):663–9.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Olson DE, Goding GS, Michael DD. Acoustic and perceptual evaluation of laryngeal reinnervation by ansa cervicalis transfer. Laryngoscope. 1998;108(12):1767–72.CrossRefGoogle Scholar
  57. 57.
    Li M, Chen S, Wang W, Chen D, Zhu M, Liu F, Zhang C, Li Y, Zheng H. Effect of duration of denervation on outcomes of ansa-recurrent laryngeal nerve reinnervation. Laryngoscope. 2014;124(8):1900–5.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wang B, Yuan J, Xu J, Xie J, Wang G, Dong P. Neurotrophin expression and laryngeal muscle pathophysiology following recurrent laryngeal nerve transection. Mol Med Rep. 2016;13(2):1234–42.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Vega-Cordova X, Cosenza NM, Helfert RH, Woodson GE. Neurotrophin expression of laryngeal muscles in response to recurrent laryngeal nerve transection. Laryngoscope. 2010;120(8):1591–6.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Halum SL, Bijangi-Vishehsaraei K, Saadatzadeh MR, McRae BR. Differences in laryngeal neurotrophic factor gene expression after recurrent laryngeal nerve and vagus nerve injuries. Ann Otol Rhinol Laryngol. 2013;122(10):653–63.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hernandez-Morato I, Sharma S, Pitman MJ. Changes in neurotrophic factors of adult rat laryngeal muscles during nerve regeneration. Neuroscience. 2016;333:44–53.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Halum SL, McRae B, Bijangi-Vishehsaraei K, Hiatt K. Neurotrophic factor-secreting autologous muscle stem cell therapy for the treatment of laryngeal denervation injury. Laryngoscope. 2012;122(11):2482–96.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    De Bodt MS, Clement G, Wuyts FL, Borghs C, Van Lierde KM. The impact of phonation mode and vocal technique on vocal fold closure in young females with normal voice quality. J Voice. 2012;26(6):818.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Dionigi G, Boni L, Rovera F, Rausei S, Castelnuovo P, Dionigi R. Postoperative laryngoscopy in thyroid surgery: proper timing to detect recurrent laryngeal nerve injury. Langenbeck's Arch Surg. 2010;395(4):327–31.CrossRefGoogle Scholar
  65. 65.
    Woo P, Isseroff TF, Parasher A, Richards A, Sivak M. Laryngeal electromyographic findings in patients with vocal fold motion asymmetry. Laryngoscope. 2016;126(8):E273–7.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Simpson CB, May LS, Green JK, Eller RL, Jackson CE. Vibratory asymmetry in mobile vocal folds: is it predictive of vocal fold paresis? Ann Otol Rhinol Laryngol. 2011;120(4):239–42.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Estes C, Sadoughi B, Mauer E, Christos P, Sulica L. Laryngoscopic and stroboscopic signs in the diagnosis of vocal fold paresis. Laryngoscope. 2017;127(9):2100–5.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Madden LL, Rosen CA. Evaluation of vocal fold motion abnormalities: are we all seeing the same thing? J Voice. 2017;31(1):72–7.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Munin MC, Heman-Ackah YD, Rosen CA, Sulica L, Maronian N, Mandel S, et al. Consensus statement: using laryngeal electromyography for the diagnosis and treatment of vocal cord paralysis. Muscle Nerve. 2016;53(6):850–5.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Bracken DJ, Ornelas G, Coleman TP, Weissbrod PA. High-density surface electromyography: a visualization method of laryngeal muscle activity. Laryngoscope. 2019;[Epub ahead of print].
  71. 71.
    Halum SL, Patel N, Smith TL, Jaradeh S, Toohill RJ, Merati AL. Laryngeal electromyography for adult unilateral vocal fold immobility: a survey of the American Broncho-Esophagological Association. Ann Otol Rhinol Laryngol. 2005;114(6):425–8.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Smith LJ, Rosen CA, Niyonkuru C, Munin MC. Quantitative electromyography improves prediction in vocal fold paralysis. Laryngoscope. 2012;122(4):854–9.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Francis DO, McKiever ME, Garrett CG, Jacobson B, Penson DF. Assessment of patient experience with unilateral vocal fold immobility: a preliminary study. J Voice. 2014;28(5):636–43.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ballard DP, Abramowitz J, Sukato DC, Bentsianov B, Rosenfeld RM. Systematic review of voice outcomes for injection laryngoplasty performed under local vs general anesthesia. Otolaryngol Head Neck Surg. 2018;159(4):608–14.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Bertroche JT, Radder M, Kallogjeri D, Paniello RC, Bradley JP. Patient-defined duration of benefit from Juvederm (hyaluronic acid) used in injection laryngoplasty. Laryngoscope. 2019; [Epub ahead of print].
  76. 76.
    Vila PM, Bhatt NK, Paniello RC. Early-injection laryngoplasty for unilateral vocal fold paralysis decreases the risk of permanent medialization surgery: a systematic review and meta-analysis. Laryngoscope. 2018;128(4):935–40.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Isshiki N, Morita H, Okamura H, Hiramoto M. Thyroplasty as a new phonosurgical technique. Acta Otolaryngol. 1974;78(5–6):451–7.CrossRefGoogle Scholar
  78. 78.
    Parker NP, Barbu AM, Hillman RE, Zeitels SM, Burns JA. Revision transcervical medialization laryngoplasty for unilateral vocal fold paralysis. Otolaryngol Head Neck Surg. 2015;153(4):593–8.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Isshiki N, Tanabe M, Sawada M. Arytenoid adduction for unilateral vocal cord paralysis. Arch Otolaryngol. 1978;104(10):555–8.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zimmermann TM, Orbelo DM, Pittelko RL, Youssef SJ, Lohse CM, Ekbom DC. Voice outcomes following medialization laryngoplasty with and without arytenoid adduction. Laryngoscope. 2018; [Epub ahead of print].
  81. 81.
    Crumley RL, Izdebski K. Voice quality following laryngeal reinnervation by ansa hypoglossi transfer. Laryngoscope. 1986;96(6):611–6.CrossRefGoogle Scholar
  82. 82.
    Paniello RC, Edgar JD, Kallogjeri D, Piccirillo JF. Medialization versus reinnervation for unilateral vocal fold paralysis: a multicenter randomized clinical trial. Laryngoscope. 2011;121(10):2172–9.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kwak PE, Tritter AG, Donovan DT, Ongkasuwan J. Long-term voice outcomes of early thyroplasty for unilateral vocal fold paralysis following aortic arch surgery. Ann Otol Rhinol Laryngol. 2016;125(7):559–63.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Ejnell H, Mansson I, Hallén O, Bake B, Stenborg R, Lindström J. A simple operation for bilateral vocal cord paralysis. Laryngoscope. 1984;94(7):954–8.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Dennis DP, Kashima H. Carbon dioxide laser posterior cordectomy for treatment of bilateral vocal cord paralysis. Ann Otol Rhinol Laryngol. 1989;98(12 Pt 1):930–4.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Crumley RL. Endoscopic laser medial arytenoidectomy for airway management in bilateral laryngeal paralysis. Ann Otol Rhinol Laryngol. 1993;102(2):81–4.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Zealear DL, Billante CR, Courey MS, Netterville JL, Paniello RC, Sanders I, et al. Reanimation of the paralyzed human larynx with an implantable electrical stimulation device. Laryngoscope. 2003;113(7):1149–56.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Li Y, Pearce EC, Mainthia R, Athavale SM, Dang J, Ashmead DH, et al. Comparison of ventilation and voice outcomes between unilateral laryngeal pacing and unilateral cordotomy for the treatment of bilateral vocal fold paralysis. ORL J Otorhinolaryngol Relat Spec. 2013;75(2):68–73.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Marina MB, Marie JP, Birchall MA. Laryngeal reinnervation for bilateral vocal fold paralysis. Curr Opin Otolaryngol Head Neck Surg. 2011;19(6):434–8.CrossRefGoogle Scholar
  90. 90.
    Li Y, Garrett G, Zealear D. Current treatment options for bilateral vocal fold paralysis: a state-of-the-art review. Clin Exp Otorhinolaryngol. 2017;10(3):203–12.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Mattsson P, Björck G, Remahl S, Bäckdahl M, Hamberger B, Hydman J, Svensson M. Nimodipine and microsurgery induced recovery of the vocal cord after recurrent laryngeal nerve resection. Laryngoscope. 2005;115(10):1863–5.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Hydman J, Remahl S, Björck G, Svensson M, Mattsson P. Nimodipine improves reinnervation and neuromuscular function after injury to the recurrent laryngeal nerve in the rat. Ann Otol Rhinol Laryngol. 2007;116(8):623–30.CrossRefGoogle Scholar
  93. 93.
    Nishimoto K, Kumai Y, Minoda R, Yumoto E. Nimodipine accelerates reinnervation of denervated rat thyroarytenoid muscle following nerve-muscle pedicle implantation. Laryngoscope. 2012;122(3):606–13.CrossRefGoogle Scholar
  94. 94.
    Rosen CA, Smith L, Young V, Krishna P, Muldoon MF, Munin MC. Prospective investigation of nimodipine for acute vocal fold paralysis. Muscle Nerve. 2014;50(1):114–8.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Mattsson P, Frostell A, Björck G, Persson JKE, Hakim R, Zedenius J, Svensson M. Recovery of voice after reconstruction of the recurrent laryngeal nerve and adjuvant nimodipine. World J Surg. 2018;42(3):632–8.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Halum SL, Naidu M, Delo DM, Atala A, Hingtgen CM. Injection of autologous muscle stem cells (myoblasts) for the treatment of vocal fold paralysis: a pilot study. Laryngoscope. 2007;117(5):917–22.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Paniello RC, Brookes S, Bhatt NK, Bijangi-Vishehsaraei K, Zhang H, Halum S. Improved adductor function after canine recurrent laryngeal nerve injury and repair using muscle progenitor cells. Laryngoscope. 2018;128(7):E241–6.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Li Y, Xu W, Cheng LY. Adipose-derived mesenchymal stem cells accelerate nerve regeneration and functional recovery in a rat model of recurrent laryngeal nerve injury. Neural Regen Res. 2017;12(9):1544–50.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Paniello RC. Vocal fold paralysis: improved adductor recovery by vincristine blockade of posterior cricoarytenoid. Laryngoscope. 2015;125(3):655–60.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Park AM, Dhanda Patil R, Paniello RC. Prevention of post-traumatic reinnervation with microtubule inhibitors. Laryngoscope. 2015;125(10):E333–7.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Paniello RC, Park AM. Effect on laryngeal adductor function of vincristine block of posterior cricoarytenoid muscle 3 to 5 months after recurrent laryngeal nerve injury. Ann Otol Rhinol Laryngol. 2015;124(6):484–9.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Paniello RC, Bhatt NK, Chernock R. Toxicity trial of canine posterior cricoarytenoid intramuscular vincristine injections. Laryngoscope. 2018;128(7):E247–50.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Kaneko M, Tsuji T, Kishimoto Y, Sugiyama Y, Nakamura T, Hirano S. Regenerative effects of basic fibroblast growth factor on restoration of thyroarytenoid muscle atrophy caused by recurrent laryngeal nerve transection. J Voice. 2018;32(6):645–51.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Goto T, Ueha R, Sato T, Fujimaki Y, Nito T, Yamasoba T. Single, high-dose local injection of bFGF improves thyroarytenoid muscle atrophy after paralysis. Laryngoscope. 2019; [Epub ahead of print].

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Otolaryngology–Head & Neck SurgeryWashington University School of MedicineSt LouisUSA

Personalised recommendations