Parkinson-Plus Syndromes

  • Cameron Miller-Patterson
  • Kathryn E. Krobot
  • Edward A. Burton
  • Libby J. SmithEmail author


Parkinsonism is a clinical syndrome defined by akinesia (paucity of spontaneous movement), bradykinesia (slowed movement), rigidity (involuntary resistance to passive displacement of a body part), and sometimes resting tremor (involuntary oscillation of a limb occurring when the limb is relaxed and supported against gravity). It is caused by loss of function of the dopaminergic projection from the substantia nigra of the midbrain to the caudate and putamen (striatum) of the basal ganglia. This can occur after exposure to dopamine receptor antagonist drugs or in diseases such as Parkinson disease (PD) that cause degeneration of substantia nigra dopaminergic neurons. Parkinson-plus syndromes are clinically and pathologically distinct from PD and combine parkinsonism with prominent additional abnormalities. In this chapter, we discuss the two most common Parkinson-plus disorders: progressive supranuclear palsy (PSP) and multiple system atrophy (MSA). Compared with PD, they typically have more prominent bulbar dysfunction and are collectively an important problem in neurolaryngology practice.


Parkinson-plus syndromes Progressive supranuclear palsy (PSP) Multiple system atrophy 


  1. 1.
    Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy: a heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol. 1964;10(4):333–59.CrossRefGoogle Scholar
  2. 2.
    McFarland NR. Diagnostic approach to atypical parkinsonian syndromes. Continuum (Minneap Minn). 2016;22(4 Movement Disorders):1117–42.Google Scholar
  3. 3.
    Nath U, Burn DJ. The epidemiology of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome). Parkinsonism Relat Disord. 2000;6(3):145–53.CrossRefGoogle Scholar
  4. 4.
    Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10(4):pii: a033118. (Published in advance).CrossRefGoogle Scholar
  5. 5.
    Ferrer I, López-González I, Carmona M, Arregui L, Dalfó E, Torrejón-Escribano B, et al. Glial and neuronal tau pathology in tauopathies: characterization of disease-specific phenotypes and tau pathology progression. J Neuropathol Exp Neurol. 2014;73(1):81–97.CrossRefGoogle Scholar
  6. 6.
    Litvan I, Hauw JJ, Bartko JJ, Lantos PL, Daniel SE, Horoupian DS, et al. Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol. 1996;55(1):97–105.CrossRefGoogle Scholar
  7. 7.
    Dickson DW. Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration. J Neurol. 1999;246(Suppl 2):II6–15.CrossRefGoogle Scholar
  8. 8.
    Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393(6686):702–5.CrossRefGoogle Scholar
  9. 9.
    Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001;24:1121–59.CrossRefGoogle Scholar
  10. 10.
    Höglinger GU, Melhem NM, Dickson DW, Sleiman PM, Wang LS, Klei L, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet. 2011;43(7):699–705.CrossRefGoogle Scholar
  11. 11.
    Kluin KJ, Foster NL, Berent S, Gilman S. Perceptual analysis of speech disorders in progressive supranuclear palsy. Neurology. 1993;43(3 Pt 1):563–6.CrossRefGoogle Scholar
  12. 12.
    Skodda S, Visser W, Schlegel U. Acoustical analysis of speech in progressive supranuclear palsy. J Voice. 2011;25(6):725–31.CrossRefGoogle Scholar
  13. 13.
    Rusz J, Bonnet C, Klempíř J, Tykalová T, Baborová E, Novotný M, et al. Speech disorders reflect differing pathophysiology in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy. J Neurol. 2015;262(4):992–1001.CrossRefGoogle Scholar
  14. 14.
    Johnston BT, Castell JA, Stumacher S, Colcher A, Gideon RM, Li Q, Castell DO. Comparison of swallowing function in Parkinson’s disease and progressive supranuclear palsy. Mov Disord. 1997;12(3):322–7.CrossRefGoogle Scholar
  15. 15.
    Müller J, Wenning GK, Verny M, McKee A, Chaudhuri KR, Jellinger K, et al. Progression of dysarthria and dysphagia in postmortem-confirmed parkinsonian disorders. Arch Neurol. 2001;58(2):259–64.CrossRefGoogle Scholar
  16. 16.
    Davis PH, Golbe LI, Duvoisin RC, Schoenberg BS. Risk factors for progressive supranuclear palsy. Neurology. 1988;38(10):1546–52.CrossRefGoogle Scholar
  17. 17.
    Litvan I, Sastry N, Sonies BC. Characterizing swallowing abnormalities in progressive supranuclear palsy. Neurology. 1997;48(6):1654–62.CrossRefGoogle Scholar
  18. 18.
    Warnecke T, Oelenberg S, Teismann I, Hamacher C, Lohmann H, Ringelstein EB, Dziewas R. Endoscopic characteristics and levodopa responsiveness of swallowing function in progressive supranuclear palsy. Mov Disord. 2010;25(9):1239–45.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Leopold NA, Kagel MC. Dysphagia in progressive supranuclear palsy: radiologic features. Dysphagia. 1997;12(3):140–3.CrossRefGoogle Scholar
  20. 20.
    Frattali CM, Sonies BC, Chi-Fishman G, Litvan I. Effects of physostigmine on swallowing and oral motor functions in patients with progressive supranuclear palsy: a pilot study. Dysphagia. 1999;14(3):165–8.CrossRefGoogle Scholar
  21. 21.
    Sale P, Castiglioni D, De Pandis MF, Torti M, Dall’armi V, Radicati FG, Stocchi F. The Lee Silverman Voice Treatment (LSVT®) speech therapy in progressive supranuclear palsy. Eur J Phys Rehabil Med. 2015;51(5):569–74.PubMedGoogle Scholar
  22. 22.
    Goetz CG, Leurgans S, Lang AE, Litvan I. Progression of gait, speech and swallowing deficits in progressive supranuclear palsy. Neurology. 2003;60(6):917–22.CrossRefGoogle Scholar
  23. 23.
    Boeve BF. Progressive supranuclear palsy. Parkinsonism Relat Disord. 2012;18(Suppl 1):S192–4.CrossRefGoogle Scholar
  24. 24.
    Lamb R, Rohrer JD, Lees AJ, Morris HR. Progressive supranuclear palsy and corticobasal degeneration: pathophysiology and treatment options. Curr Treat Options Neurol. 2016;18(9):42.CrossRefGoogle Scholar
  25. 25.
    Gómez-Caravaca MT, Cáceres-Redondo MT, Huertas-Fernández I, Vargas-González L, Carrillo F, Carballo M, Mir P. The use of botulinum toxin in the treatment of sialorrhea in parkinsonian disorders. Neurol Sci. 2015;36(2):275–9.CrossRefGoogle Scholar
  26. 26.
    Boxer AL, Lang AE, Grossman M, Knopman DS, Miller BL, Schneider LS, et al., AL-108-231 Investigators. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 2014;13(7):676–685.Google Scholar
  27. 27.
    Tolosa E, Litvan I, Höglinger GU, Burn D, Lees A, Andrés MV, et al., TAUROS Investigators. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord. 2014;29(4):470–478.Google Scholar
  28. 28.
    Golbe LI, Ohman-Strickland PA. A clinical rating scale for progressive supranuclear palsy. Brain. 2007;130(Pt 6):1552–65.CrossRefGoogle Scholar
  29. 29.
    Boxer AL, Yu JT, Golbe LI, Litvan I, Lang AE, Höglinger GU. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol. 2017;16(7):552–63.CrossRefGoogle Scholar
  30. 30.
    Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71(9):670–6.CrossRefGoogle Scholar
  31. 31.
    Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med. 2015;372(14):1375–6.PubMedGoogle Scholar
  32. 32.
    Ozawa T, Paviour D, Quinn NP, Josephs KA, Sangha H, Kilford L, et al. The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain. 2004;127(Pt 12):2657–71.CrossRefGoogle Scholar
  33. 33.
    Cochen De Cock V. Sleep abnormalities in multiple system atrophy. Curr Treat Options Neurol. 2018;20(6):16.CrossRefGoogle Scholar
  34. 34.
    Papp MI, Kahn JE, Lantos PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci. 1989;94(1–3):9–100.Google Scholar
  35. 35.
    Tu PH, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, et al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol. 1998;44(3):415–22.CrossRefGoogle Scholar
  36. 36.
    Sailer A, Scholz SW, Nalls MA, Schulte C, Federoff M, Price TR, et al., European Multiple System Atrophy Study Group and the UK Multiple System Atrophy Study Group. A genome-wide association study in multiple system atrophy. Neurology 2016;87(15):1591–1598.Google Scholar
  37. 37.
    Hartelius L, Theodoros D, Cahill L, Lillvik M. Comparability of perceptual analysis of speech characteristics in Australian and Swedish speakers with multiple sclerosis. Folia Phoniatr Logop. 2003;55(4):177–88.CrossRefGoogle Scholar
  38. 38.
    Ohshima Y, Nakayama H, Matsuyama N, Hokari S, Sakagami T, Sato T, et al. Natural course and potential prognostic factors for sleep-disordered breathing in multiple system atrophy. Sleep Med. 2017;34:13–7.CrossRefGoogle Scholar
  39. 39.
    Wenning GK, Tison F, Ben Shlomo Y, Daniel SE, Quinn NP. Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord. 1997;12(2):133–47.CrossRefGoogle Scholar
  40. 40.
    Higo R, Nito T, Tayama N. Swallowing function in patients with multiple-system atrophy with a clinical predominance of cerebellar symptoms (MSA-C). Eur Arch Otorhinolaryngol. 2005;262(8):646–50.CrossRefGoogle Scholar
  41. 41.
    Lalich IJ, Ekbom DC, Starkman SJ, Orbelo DM, Morgenthaler TI. Vocal fold motion impairment in multiple system atrophy. Laryngoscope. 2014;124(3):730–5.CrossRefGoogle Scholar
  42. 42.
    Iranzo A, Santamaria J, Tolosa E, Vilaseca I, Valldeoriola F, Martí MJ, Muñoz E. Long-term effect of CPAP in the treatment of nocturnal stridor in multiple system atrophy. Neurology. 2004;63(5):930–2.CrossRefGoogle Scholar
  43. 43.
    Giannini G, Calandra-Buonaura G, Mastrolilli F, Righini M, Bacchi-Reggiani ML, Cecere A, et al. Early stridor onset and stridor treatment predict survival in 136 patients with MSA. Neurology. 2016;87(13):1375–83.CrossRefGoogle Scholar
  44. 44.
    Rekik S, Martin F, Dodet P, Redolfi S, Leu-Semenescu S, Corvol JC, et al. Stridor combined with other sleep breathing disorders in multiple system atrophy: a tailored treatment? Sleep Med. 2018;42:53–60.CrossRefGoogle Scholar
  45. 45.
    Laurens B, Vergnet S, Lopez MC, Foubert-Samier A, Tison F, Fernagut PO, Meissner WG. Multiple system atrophy—state of the art. Curr Neurol Neurosci Rep. 2017;17(5):41.CrossRefGoogle Scholar
  46. 46.
    Kaufmann H, Freeman R, Biaggioni I, Low P, Pedder S, Hewitt LA, et al., NOH301 Investigators. Droxidopa for neurogenic orthostatic hypotension: a randomized, placebo-controlled, phase 3 trial. Neurology 2014;83(4):328–335.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Cameron Miller-Patterson
    • 1
  • Kathryn E. Krobot
    • 2
  • Edward A. Burton
    • 1
  • Libby J. Smith
    • 2
    Email author
  1. 1.Department of NeurologyUniversity of Pittsburgh Medical CenterPittsburghUSA
  2. 2.Department of OtolaryngologyUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations