Advertisement

Applications in Clinical Psychology

  • Till Frank
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

As pointed out in Sects.  1.5,  3.1, and  3.2 the pattern formation perspective is part of a broad perspective that addresses how system of the animate and inanimate worlds can form qualitatively new states and how transitions between qualitatively different states take place. In this context, aggregate phase transitions (e.g., transitions from ice to water), phase transitions in non-equilibrium systems of the inanimate world (e.g., emergence of roll patterns in fluids and gases heated from below), and transitions between qualitatively different movement patterns of humans and animals (e.g., walk to trot gait transitions in horses) have been considered on an equal footing. It has been pointed out that when an individual stands up from a chair and starts to walk, then the sit-to-stand and stand-to-walk transitions from a physics perspective are considered as counterparts to aggregate phase transitions such as ice-to-water and water-to-gas transitions.

References

  1. 11.
    S. Avissar, G. Schreiber, The involvement of guanine nucleotide binding proteins in the pathogenesis and treatment of affective disorders. Biol. Psychiatry 31, 435–459 (1992)CrossRefGoogle Scholar
  2. 15.
    G. Barbalat, M. Rouault, N. Bazargani, S. Shergill, S.J. Blakemore, The influence of prior expectations on facial expression discrimination in schizophrenia. Psychol. Med. 42, 2301–2311 (2012)CrossRefGoogle Scholar
  3. 17.
    M. Bauer, S. Beaulieu, D.L. Dunner, B. Lafer, R. Kupka, Rapid cycling bipolar disorder - diagnostic concepts. Bipolar Disord. 10, 153–162 (2008)CrossRefGoogle Scholar
  4. 34.
    C.L. Bowden et al., The efficacy of lamotrigine in rapid cycling and non-rapid cycling patients with bipolar disorder. Biol. Psychiatr. 45, 953–958 (1999)CrossRefGoogle Scholar
  5. 38.
    P.C. Bressloff, J.D. Cowan, M. Golubitsky, P.J. Thomas, M.C. Wiener, Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Phil. Trans. R. Soc. Lond. B 356, 299–330 (2001)zbMATHCrossRefGoogle Scholar
  6. 39.
    P.C. Bressloff, J.D. Cowan, M. Golubitsky, P.J. Thomas, M.C. Wiener, What geometric visual hallucinations tell us about the visual cortex. Neural Comput. 14, 473–491 (2002)zbMATHCrossRefGoogle Scholar
  7. 41.
    P.D. Butler, S.M. Silverstein, S.C. Dakin, Visual perception and its impairment in schizophrenia. Biol. Psychiatry 64, 40–47 (2008)CrossRefGoogle Scholar
  8. 50.
    D. Cho, C.L. Park, T.O. Blank, Emotional approach coping: gender differences on psychological adjustment in young to middle-aged cancer survivors. Psychol. Health 28, 874–894 (2013)CrossRefGoogle Scholar
  9. 52.
    L. Ciompi, The key role of emotions in the schizophrenia puzzle. Schizophr. Bull. 4, 318–322 (2015)CrossRefGoogle Scholar
  10. 54.
    R.J. Comer, Abnormal Psychology (Worth Publishers, New York, 2007)Google Scholar
  11. 56.
    J.T. Coyle, R.S. Duman, Finding the intercellular signaling pathways affected by mood disorder treatments. Neuron, 38, 157–160 (2003)CrossRefGoogle Scholar
  12. 72.
    J. Du, J. Quiroz, P. Yuan, C. Zarate, H.K. Manji, Bipolar disorder: involvement of signaling cascades and AMPA receptor trafficking at synapses. Neuron Glia Biol. 1, 231–243 (2004)CrossRefGoogle Scholar
  13. 73.
    S.L. Dubovsky, Rapid cycling bipolar disease: new concepts and treatments. Curr. Psychiatry Rep. 3, 451–462 (2001)CrossRefGoogle Scholar
  14. 80.
    H. Einat, H.K. Manji, Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol. Psychiatry 59, 1160–1171 (2006)CrossRefGoogle Scholar
  15. 81.
    L. Fajutrao et al., A systematic review of the evidence of the burden of bipolar disorder in Europe. Clin. Pract. Epidemiol. Ment. Health 5, article 3 (2009)CrossRefGoogle Scholar
  16. 84.
    E.B. Foa, Cognitive behavioral therapy of obsessive-compulsive disorder. Dialogues Clin. Neurosci. 12, 199–207 (2010)Google Scholar
  17. 85.
    T.D. Frank, Multivariate Markov processes for stochastic systems with delays: application to the stochastic Gompertz model with delay. Phys. Rev. E 66, 011914 (2002)ADSMathSciNetCrossRefGoogle Scholar
  18. 87.
    T.D. Frank, Delay Fokker-Planck equations, perturbation theory, and data analysis for nonlinear stochastic systems with time delays. Phys. Rev. E 71, 031106 (2005)ADSCrossRefGoogle Scholar
  19. 90.
    T.D. Frank, On a multistable competitive network model in the case of an inhomogeneous growth rate spectrum with an application to priming. Phys. Lett. A 373, 4127–4133 (2009)ADSzbMATHCrossRefGoogle Scholar
  20. 99.
    T.D. Frank, A limit cycle model for cycling mood variations of bipolar disorder patients derived from cellular biochemical reaction equations. Commun. Nonlinear Sci. Numer. Simul. 18, 2107–2119 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. 100.
    T.D. Frank, Action flow in obsessive-compulsive disorder rituals: a model based on extended synergetics and a comment on the 4th law. J. Adv. Phys. 5, 845–853 (2014)CrossRefGoogle Scholar
  22. 101.
    T.D. Frank, From systems biology to systems theory of bipolar disorder, in Systems Theory: Perspectives, Applications and Developments, ed. by F. Miranda, Chap. 2 (Nova Publ., New York, 2014), pp. 17–36Google Scholar
  23. 102.
    T.D. Frank, Multistable perception in schizophrenia: a model-based analysis via coarse-grained order parameter dynamics and a comment on the 4th law. Univ. J. Psychol. 2, 231–240 (2014)Google Scholar
  24. 104.
    T.D. Frank, Secondary bifurcations in a Lotka-Volterra model for n competitors with applications to action selection and compulsive behaviors. Int. J. Bifurcation Chaos 24, article 1450156 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 106.
    T.D. Frank, On the interplay between order parameter and system parameter dynamics in human perceptual-cognitive-behavioral systems. Nonlinear Dynamics Psychol. Life Sci. 19, 111–146 (2015)ADSMathSciNetGoogle Scholar
  26. 120.
    T.D. Frank, M.J. Richardson, S.M. Lopresti-Goodman, M.T. Turvey, Order parameter dynamics of body-scaled hysteresis and mode transitions in grasping behavior. J. Biol. Phys. 35, 127–147 (2009)CrossRefGoogle Scholar
  27. 126.
    K.J. Friston, Theoretical neurobiology and schizophrenia. Br. Med. Bull. 52, 644–655 (1996)CrossRefGoogle Scholar
  28. 135.
    L. Glass, M.C. Mackey, From Clocks to Chaos (Princeton University Press, Princeton, 1988)zbMATHGoogle Scholar
  29. 141.
    T.D. Gould, H.K. Manji, Signaling networks in the pathophysiology and treatment of mood disorders. J. Psychosom. Res. 53, 687–697 (2002)CrossRefGoogle Scholar
  30. 146.
    K.S. Griswold, L.F. Pessar, Management of bipolar disorder. Am. Family Phys. 62, 1343–1353 (2000)Google Scholar
  31. 154.
    H. Haken, Synergetics. An Introduction (Springer, Berlin, 1977)Google Scholar
  32. 155.
    H. Haken, Light - Laser Light Dynamics (North-Holland Publ. Company, Amsterdam, 1985)Google Scholar
  33. 157.
    H. Haken, Synergetic Computers and Cognition (Springer, Berlin, 1991)zbMATHCrossRefGoogle Scholar
  34. 161.
    H. Haken, G. Schiepek, Synergetik in der Psychologie (in German) (Hogrefe, Gottingen, 2006)Google Scholar
  35. 170.
    J.D. Huppert, M.E. Franklin, Cognitive behavioral therapy for obsessive-compulsive disorder: an update. Curr. Psychiatric Rep. 7, 268–273 (2005)CrossRefGoogle Scholar
  36. 178.
    R.S. Jope, Anti-bipolar therapy: mechanisms of action of lithium. Mol. Psychiatry 4, 117–128 (1999)CrossRefGoogle Scholar
  37. 181.
    M.B. Keller, L.A. Baker, Bipolar disorder: epidemiology, course, diagnosis, and treatment. Bull. Menn. Clin. 55, 172–181 (1991)Google Scholar
  38. 184.
    S. Keri, A. Antal, G. Szekeres, G. Benedek, Z. Janka, Spatiotemporal visual processing in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 14, 190–196 (2002)CrossRefGoogle Scholar
  39. 185.
    S.L. Kerr, J.M. Neale, Emotion perception in schizophrenia: specific deficit or further evidence of generalized poor performance? J. Abnorm. Psychol. 102, 312–318 (1993)CrossRefGoogle Scholar
  40. 189.
    K. Koffka, An introduction to gestalt theory. Psychol. Bull. 19, 531–585 (1922)CrossRefGoogle Scholar
  41. 196.
    A. Kreinin, Hearing voices in schizophrenia: who’s voices are they? Med. Hypotheses 80, 352–356 (2013)CrossRefGoogle Scholar
  42. 201.
    R.W. Kupka et al., Comparison of rapid-cycling and non-rapid-cycling bipolar disorder based on prospective mood rating in 539 outpatients. Am. J. Psychiatry 162, 1273–1280 (2005)CrossRefGoogle Scholar
  43. 202.
    S. Kuroda, N. Schweighofer, M. Kawato, Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J. Neuroscience 21, 5693–5702 (2001)CrossRefGoogle Scholar
  44. 203.
    D.D. Kurylo, R. Pasternak, G. Silipo, D.C. Javin, P.D. Butler, Perceptual organization by proximity and similarity in schizophrenia. Schizophr. Res. 95, 205–214 (2007)CrossRefGoogle Scholar
  45. 215.
    S.M. Lopresti-Goodman, M.T. Turvey, T.D. Frank, Behavioral dynamics of the affordance “graspable”. Atten. Percept. Psychophys. 73, 1948–1965 (2011)CrossRefGoogle Scholar
  46. 218.
    M.H.R. Ludtmann, K. Boeckeler, R.S.B. Williams, Molecular pharmacology in a simple model system: implicating MAP kinase and phosphoinositide signalling in bipolar disorder. Semin. Cell Dev. Biol. 22, 105–113 (2011)CrossRefGoogle Scholar
  47. 221.
    M.R. Lyons, A.E. West, Mechanisms of specificity in neuronal activity-regulated gene transportation. Prog. Neurobiol. 94, 259–295 (2011)CrossRefGoogle Scholar
  48. 222.
    A.W. MacDonald, S.C. Schulz, What we know: findings that every theory of schizophrenia should explain. Schizophr. Bull. 35, 493–508 (2009)CrossRefGoogle Scholar
  49. 223.
    M.C. Mackey, L. Glass, Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977)ADSzbMATHCrossRefGoogle Scholar
  50. 224.
    P. Mackin, A.H. Young, Rapid cycling bipolar disorder: historical overview and focus on emerging treatments. Bipolar Disord. 6, 523–529 (2004)CrossRefGoogle Scholar
  51. 231.
    M.K. Mandal, R. Pandey, A.B. Prasad, Facial expressions of emotions and schizophrenia: a review. Schizophr. Bull. 24, 399–412 (1998)CrossRefGoogle Scholar
  52. 234.
    J.R. Martin, G. Dezechache, D. Pressnitzer, P. Nuss, J. Dokic, N. Bruno, E. Pacherie, N. Franck, Perceptual hysteresis as a marker of perceptual inflexibility in schizophrenia. Conscious. Cogn. 30, 62–72 (2014)CrossRefGoogle Scholar
  53. 235.
    D. Mataix-Cols, S. Wooderson, N. Lawrence, M.J. Brammer, A. Speckens, M.L. Phillips, Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch. Gen. Psychiatry 61, 564–576 (2004)CrossRefGoogle Scholar
  54. 238.
    D.J. Miklowitz, M.J. Goldstein, Family factors and the course of bipolar affective disorder. Arch. Gen. Psychiatry 45, 225–231 (1988)CrossRefGoogle Scholar
  55. 239.
    S. Mongkolsakulvong, T.D. Frank, Synchronization and anchoring of two non-harmonic canonical-dissipative oscillators via Smorodinsky-Winternitz potentials. Condens. Matter Phys. 20, article 44001 (2017)CrossRefGoogle Scholar
  56. 265.
    M.I. Rabinovich, M.K. Muezzinoghu, I. Strigo, A. Bystritsky, Dynamic principles of emotion-cognition interaction: mathematical images of mental disorders. PLoS One 5, e12547 (2010)ADSCrossRefGoogle Scholar
  57. 273.
    G. Roeper, S. Rachman, Obsessional-compulsive checking: experimental replication and development. Behav. Res. Therapy 12, 25–32 (1976)CrossRefGoogle Scholar
  58. 275.
    S. Saha, D. Chant, J. Welham, J. McGrath, A systematic review of the prevalence of schizophrenia. PLos Med. 2, article e141 (2005)CrossRefGoogle Scholar
  59. 276.
    J.D. Salamone, A. Wisniecki, B.B. Carlson, M. Correa, Nucleus accumbens dopamine depletions make animals highly sensitive to high fixed ratio requirements but do not impair primary food reinforcement. Neuroscience 105, 863–870 (2001)CrossRefGoogle Scholar
  60. 277.
    G. Schiepek, G. Strunk, The identification of critical fluctuations and phase transitions in short term and coarse-grained time series: a method for real time monitoring of human change processes. Biol. Cybern. 102, 197–207 (2010)CrossRefGoogle Scholar
  61. 278.
    G. Schiepek, I. Tominschek, S. Karch, et al., A controlled single case study with repeated fMRI measurements during the treatment of a patient with obsessive-compulsive disorder: testing the nonlinear dynamics approach to psychotherapy. World J. Biol. Psychiatry 10, 658–668 (2009)CrossRefGoogle Scholar
  62. 279.
    G. Schiepek, I. Tominschek, S. Heinzel, et al., Discontinuous patterns of brain activation in the psychotherapy process of obsessive-compulsive disorder: converging results from repeated fMRI and daily self-reports. PLoS One 8, article e71863 (2013)ADSCrossRefGoogle Scholar
  63. 280.
    G. Schiepek, W. Aichhorn, M. Gruber, G. Strunk, E. Bachler, B. Aas, Real-time monitoring of psychotherapeutic processes: concept and compliance. Front. Psychol. 7, article 604 (2016)Google Scholar
  64. 287.
    G. Schreiber, S. Avissar, Lithium sensitive G protein hyperfunction: a dynamic model for the pathogenesis of bipolar affective disorder. Med. Hypotheses 35, 237–243 (1991)CrossRefGoogle Scholar
  65. 306.
    A.L. Stanton, S.B. Kirk, C.L. Cameron, S. Danoff-Burg, Coping through emotional approach: scale construction and validation. J. Pers. Soc. Psychol. 78, 1150–1169 (2000)CrossRefGoogle Scholar
  66. 307.
    A. Steinacher, K.A. Wright, Relating the bipolar spectrum to dysregulation of behavioral activation: a perspective from dynamical modelling. PLoS One 8, article e63345 (2013)ADSCrossRefGoogle Scholar
  67. 315.
    K. Tanaka, G.J. Augustine, A positive feedback signal transduction loop determines timing of cerebellar long-term depression. Neuron 59, 608–620 (2008)CrossRefGoogle Scholar
  68. 321.
    F. Tretter, P.J. Gebicke-Haerter, U. an der Heiden, H.W. Mewes, C.W. Turck, Affective disorders as complex dynamic diseases: a perspective from systems biology. Pharmacopsychiatry 44(Suppl 1), S2–S8 (2011)CrossRefGoogle Scholar
  69. 322.
    W. Tschacher, How specific is the Gestalt-informed approach to schizophrenia. Gestalt Theory: Int. Multidiscip. J. 26, 335–344 (2004)Google Scholar
  70. 323.
    W. Tschacher, C. Scheier, K. Grawe, Order and pattern formation in psychotherapy. Nonlinear Dynamics Psychol. Life Sci. 2, 195–215 (1998)CrossRefGoogle Scholar
  71. 324.
    W. Tschacher, D. Schuler, U. Junghan, Reduced perception of the motion-induced blindness illusion in schizophrenia. Schizophr. Res. 81, 261–267 (2006)CrossRefGoogle Scholar
  72. 327.
    P.J. Uhlhaas, S.M. Silverstein, The continuing relevance of Gestalt psychology for an understanding of schizophrenia. Gestalt Theory Int. Multidiscip. J. 25, 256–279 (2003)Google Scholar
  73. 344.
    F. Waters, Visual hallucinations in the psychosis spectrum and comparative information from neurodegenerative disorders and eye diseases. Schizophr. Bull. 40(Suppl.), S233–S245 (2017)CrossRefGoogle Scholar
  74. 348.
    M. Wertheimer, Untersuchungen zur Lehre von Gestalt II (in German). Psychol. Forsch. 4, 301–305 (1923)CrossRefGoogle Scholar
  75. 355.
    T.S. Woodward, S. Moritz, M. Menon, Belief inflexibility in schizophrenia. Cogn. Neuropsychiatry 13, 267–277 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Till Frank
    • 1
  1. 1.Dept. Psychology and PhysicsUniversity of ConnecticutStorrsUSA

Personalised recommendations