Ovals with 4n Centres: The Ground Plan of the Colosseum and the Neuilly Bridge Arches

  • Angelo Alessandro Mazzotti


Ovals with more than four centres have been widely used, for example to align important points in a building and/or to improve a four-centre oval in its resemblance to an ellipse. These can be so close to each other that many researchers argue whether famous buildings were in fact designed (and/or built) as eight (or more) -centre ovals or as ellipses. Within the common work on the Colosseum [1], Trevisan (see [18]) compares the ground plan of various Roman amphitheatres and discusses the four- and eight-centre options (we will discuss this in detail in Sect. 8.2), while Benedetti (see [2]) suggests an eight-centre oval construction for Antonio da Sangallo’s Vatican dome, as also reported by Migliari in [12], where in general the oval vs ellipse dispute is discussed. Due to technical, practical and aesthetical advantages, arches and bridges have often been built using half-ovals with 5, 7, 9 or more centres (the formula for a half-oval is 2n + 1 centres): we will deal with an example of this in Sect. 8.3—the bridge at Neuilly by Perronet—with the help of Zerlenga’s book [20]. More about lowered arches can then be found in Breymann’s work [3].


  1. 1.
    AA.VV: Il Colosseo. Studi e ricerche (Disegnare idee immagini X(18-19)), Roma. Gangemi (1999)Google Scholar
  2. 2.
    Benedetti, S.: Oltre l’antico e il gotico. Il profilo della cupola vaticana di Antonio da Sangallo il Giovane. Palladio. 14, 57–166 (1995)Google Scholar
  3. 3.
    Breymann, G.A.: Trattato di costruzioni civili con cenni speciali intorno alle costruzioni grandiose. Vallardi, Milano (1926–1931)Google Scholar
  4. 4.
    Casale, A.: Alcune ipotesi sul progetto e sulle geometrie del Colosseo. Disegnare Idee Immagini. 18–19, 81–87 (1999)Google Scholar
  5. 5.
    Croci, G.: Il comportamento strutturale del Colosseo. Disegnare Idee Immagini. 18–19, 15–22 (1999)Google Scholar
  6. 6.
    Docci, M.: La forma del Colosseo: dieci anni di ricerche. Il dialogo con i gromatici romani. Disegnare Idee Immagini. 18–19, 23–32 (1999)Google Scholar
  7. 7.
    Dotto, E.: Il Disegno Degli Ovali Armonici. Le Nove Muse, Catania (2002)Google Scholar
  8. 8.
    Ginoux, J.-M., Golvin, J.-C.: Sur la détermination du périmètre de l’ovale à huit centres. Comptes Rendus Mat. 356, 1195–1202 (2018)CrossRefzbMATHGoogle Scholar
  9. 9.
    Golvin, J.-C.: L’Amphithéâtre romain: essai sur la théorisation de sa forme et de ses fonctions. Boccard, Paris (1988)Google Scholar
  10. 10.
    Gómez-Collado, M.D.C., Calvo Roselló, V., Capilla Tamborero, E.: Mathematical modeling of oval arches. A study of the George V and Neuilly Bridges. J Cult. Herit. 32, 144–155 (2018)CrossRefGoogle Scholar
  11. 11.
    Mazzotti, A.A.: A Euclidean approach to eggs and polycentric curves. Nexus Netw. J. 16(2), 345–387 (2014)CrossRefzbMATHGoogle Scholar
  12. 12.
    Migliari, R.: Ellissi e ovali. Epilogo di un conflitto. Palladio. 16(8), 93–102 (1995)Google Scholar
  13. 13.
    Migliari, R.: Principi teorici e prime acquisizioni nel rilievo del Colosseo. Disegnare Idee Immagini. 18–19, 33–50 (1999)Google Scholar
  14. 14.
    Perronet, J.R.: Descriptions des Projets et de la Constructions des Pont de Neuilli, de Mantes, d’Orléans, etc. Paris (1788)Google Scholar
  15. 15.
    Ragazzo, F.: Curve Policentriche. Sistemi di raccordo tra archi e rette. Prospettive, Roma (2011)Google Scholar
  16. 13.
    Rosin, P.L., Pitteway, M.L.V.: The ellipse and the five-centred arch. Math. Gaz. 85(502), 13–24 (2001)CrossRefGoogle Scholar
  17. 17.
    Sciacchitano, E.: Il Colosseo. Geometria dell’impianto. Disegnare Idee Immagini. 18–19, 107–116 (1999)Google Scholar
  18. 18.
    Trevisan, C.: Sullo schema geometrico costruttivo degli anfiteatri romani: gli esempi del Colosseo e dell’arena di Verona. Disegnare Idee Immagini. 18–19, 117–132 (2000)Google Scholar
  19. 19.
    Wilson Jones, M.: Designing Amphitheatres. Mitteilungen des Deutschen Archäologischen Instituts, Römische Abteilung. 100, 391–442 (1993)Google Scholar
  20. 20.
    Zerlenga, O.: La “forma ovata” in architettura, Rappresentazione geometrica. Cuen, Napoli (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Angelo Alessandro Mazzotti
    • 1
  1. 1.RomaItaly

Personalised recommendations