Advertisement

Gastric Bypass pp 421-451 | Cite as

Gastric Bypass for Type 2 Diabetes Mellitus on BMI >35

  • Jad Khoraki
  • Matthew G. Browning
  • Bernardo M. Pessoa
  • Guilherme M. CamposEmail author
Chapter
  • 34 Downloads

Abstract

The type 2 diabetes (T2D) epidemic in the USA is paralleled with the obesity epidemic, a modifiable risk factor for T2D. The pathophysiology of T2D in patients with severe obesity (BMI ≥ 35 kg/m2) is multifactorial and includes increased central and intrahepatic adiposity, absolute or relative deficiency in pancreatic β-cell insulin production, and insulin resistance. These lead to chronic hyperglycemia with multiple end-organ damage. Compared to conventional medical therapy, gastric bypass produces higher rates of T2D remission and reduction in T2D-associated complications and premature mortality. Randomized studies showed that gastric bypass has equivalent and superior outcomes compared to biliopancreatic diversion and gastric banding, respectively. However, conflicting results were observed when it was compared to sleeve gastrectomy. Preoperative and postoperative factors can predict T2D remission and relapse, and glycemic control involves several weight-dependent and weight-independent mechanisms.

Keywords

Type 2 diabetes Severe obesity Remission Relapse Complications Mortality 

References

  1. 1.
    Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    World Health Organization. Diabetes; 2017. Available from: http://www.who.int/news-room/fact-sheets/detail/diabetes.
  3. 3.
    Centers for Disease Control and Prevention, United States diabetes surveillance system. Diagnosed diabetes, total, adults with diabetes, age-adjusted percentage, natural breaks, all states; 2018. Available from: https://gis.cdc.gov/grasp/diabetes/DiabetesAtlas.html.
  4. 4.
    Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284–91.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ganz ML, Wintfeld N, Li Q, Alas V, Langer J, Hammer M. The association of body mass index with the risk of type 2 diabetes: a case-control study nested in an electronic health records system in the United States. Diabetol Metab Syndr. 2014;6(1):50.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gregg EW, Cheng YJ, Narayan KM, Thompson TJ, Williamson DF. The relative contributions of different levels of overweight and obesity to the increased prevalence of diabetes in the United States: 1976–2004. Prev Med. 2007;45(5):348–52.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ribaric G, Buchwald JN, McGlennon TW. Diabetes and weight in comparative studies of bariatric surgery vs conventional medical therapy: a systematic review and meta-analysis. Obes Surg. 2014;24(3):437–55.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes – 5-year outcomes. N Engl J Med. 2017;376(7):641–51.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357(8):753–61.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Fisher DP, Johnson E, Haneuse S, Arterburn D, Coleman KJ, O’Connor PJ, et al. Association between bariatric surgery and macrovascular disease outcomes in patients with type 2 diabetes and severe obesity. JAMA. 2018;320(15):1570–82.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    American Society for Metabolic and Bariatric Surgery. Estimate of bariatric surgery numbers, 2011–2017; 2018. Available from: https://asmbs.org/resources/estimate-of-bariatric-surgery-numbers.
  12. 12.
    Pereira MJ, Skrtic S, Katsogiannos P, Abrahamsson N, Sidibeh CO, Dahgam S, et al. Impaired adipose tissue lipid storage, but not altered lipolysis, contributes to elevated levels of NEFA in type 2 diabetes. Degree of hyperglycemia and adiposity are important factors. Metab Clin Exp. 2016;65(12):1768–80.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Macauley M, Smith FE, Thelwall PE, Hollingsworth KG, Taylor R. Diurnal variation in skeletal muscle and liver glycogen in humans with normal health and Type 2 diabetes. Clin Sci (London, England: 1979). 2015;128(10):707–13.CrossRefGoogle Scholar
  14. 14.
    Lorenzo C, Hanley AJ, Wagenknecht LE, Rewers MJ, Stefanovski D, Goodarzi MO, et al. Relationship of insulin sensitivity, insulin secretion, and adiposity with insulin clearance in a multiethnic population: the insulin Resistance Atherosclerosis study. Diabetes Care. 2013;36(1):101–3.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Khoraki J, Wiens CN, McMillan AB, Artz NS, Haufe W, Campo CA, et al. Intrahepatic fat, not obesity, is a main driver of the metabolic syndrome in obese patients and is significantly reduced by weight loss surgery. J Am Coll Surg. 2016;223(4):e1.Google Scholar
  16. 16.
    Costes S, Langen R, Gurlo T, Matveyenko AV, Butler PC. beta-cell failure in type 2 diabetes: a case of asking too much of too few? Diabetes. 2013;62(2):327–35.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT, Gabrielsen J, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care. 2013;36(7):1859–64.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Eissing L, Scherer T, Todter K, Knippschild U, Greve JW, Buurman WA, et al. De novo lipogenesis in human fat and liver is linked to ChREBP-beta and metabolic health. Nat Commun. 2013;4:1528.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Auguet T, Guiu-Jurado E, Berlanga A, Terra X, Martinez S, Porras JA, et al. Downregulation of lipogenesis and fatty acid oxidation in the subcutaneous adipose tissue of morbidly obese women. Obesity (Silver Spring, MD). 2014;22(9):2032–8.CrossRefGoogle Scholar
  20. 20.
    Chai SY, Pan XY, Song KX, Huang YY, Li F, Cheng XY, et al. Differential patterns of insulin secretion and sensitivity in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease versus patients with type 2 diabetes mellitus alone. Lipids Health Dis. 2014;13:7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Buse JB, Caprio S, Cefalu WT, Ceriello A, Del Prato S, Inzucchi SE, et al. How do we define cure of diabetes? Diabetes Care. 2009;32(11):2133–5.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    American Diabetes Association. Executive summary: standards of medical care in diabetes--2012. Diabetes Care. 2012;35(Suppl 1):S4–s10.Google Scholar
  23. 23.
    Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56.e5.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chikunguwo SM, Wolfe LG, Dodson P, Meador JG, Baugh N, Clore JN, et al. Analysis of factors associated with durable remission of diabetes after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2010;6(3):254–9.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Panunzi S, De Gaetano A, Carnicelli A, Mingrone G. Predictors of remission of diabetes mellitus in severely obese individuals undergoing bariatric surgery: do BMI or procedure choice matter? A meta-analysis. Ann Surg. 2015;261(3):459–67.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Zhang Y, Zhao H, Cao Z, Sun X, Zhang C, Cai W, et al. A randomized clinical trial of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy for the treatment of morbid obesity in China: a 5-year outcome. Obes Surg. 2014;24(10):1617–24.CrossRefGoogle Scholar
  27. 27.
    Yu J, Zhou X, Li L, Li S, Tan J, Li Y, et al. The long-term effects of bariatric surgery for type 2 diabetes: systematic review and meta-analysis of randomized and non-randomized evidence. Obes Surg. 2015;25(1):143–58.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Arterburn DE, Bogart A, Sherwood NE, Sidney S, Coleman KJ, Haneuse S, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013;23(1):93–102.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Brethauer SA, Aminian A, Romero-Talamas H, Batayyah E, Mackey J, Kennedy L, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258(4):628–36; discussion 36–7.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73.CrossRefGoogle Scholar
  31. 31.
    DiGiorgi M, Rosen DJ, Choi JJ, Milone L, Schrope B, Olivero-Rivera L, et al. Re-emergence of diabetes after gastric bypass in patients with mid- to long-term follow-up. Surg Obes Relat Dis. 2010;6(3):249–53.PubMedCrossRefGoogle Scholar
  32. 32.
    de Oliveira VLP, Martins GP, Mottin CC, Rizzolli J, Friedman R. Predictors of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass in severely obese patients. Obes Surg. 2018;28(1):195–203.PubMedCrossRefGoogle Scholar
  33. 33.
    Xiaosong W, Chongyu S, Xuqi S, Peiwu Y, Yongliang Z. Risk factors for relapse of hyperglycemia after laparoscopic Roux-en-Y gastric bypass in T2DM obese patients: a 5-year follow-up of 24 cases. Obes Surg. 2019;29:1164.PubMedCrossRefGoogle Scholar
  34. 34.
    Yan Y, Sha Y, Yao G, Wang S, Kong F, Liu H, et al. Roux-en-Y gastric bypass versus medical treatment for type 2 diabetes mellitus in obese patients: a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2016;95(17):e3462.CrossRefGoogle Scholar
  35. 35.
    Ikramuddin S, Billington CJ, Lee WJ, Bantle JP, Thomas AJ, Connett JE, et al. Roux-en-Y gastric bypass for diabetes (the Diabetes Surgery Study): 2-year outcomes of a 5-year, randomised, controlled trial. Lancet Diabetes Endocrinol. 2015;3(6):413–22.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Smith MD, Adeniji A, Wahed AS, Patterson E, Chapman W, Courcoulas AP, et al. Technical factors associated with anastomotic leak after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2015;11(2):313–20.PubMedCrossRefGoogle Scholar
  37. 37.
    Halperin F, Ding SA, Simonson DC, Panosian J, Goebel-Fabbri A, Wewalka M, et al. Roux-en-Y gastric bypass surgery or lifestyle with intensive medical management in patients with type 2 diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg. 2014;149(7):716–26.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Liang Z, Wu Q, Chen B, Yu P, Zhao H, Ouyang X. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2013;101(1):50–6.CrossRefGoogle Scholar
  39. 39.
    Pournaras DJ, Aasheim ET, Sovik TT, Andrews R, Mahon D, Welbourn R, et al. Effect of the definition of type II diabetes remission in the evaluation of bariatric surgery for metabolic disorders. Br J Surg. 2012;99(1):100–3.PubMedCrossRefGoogle Scholar
  40. 40.
    Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KG, Zimmet PZ, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39(6):861–77.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Dixon JB, Fitzgerald DA, Kow L, Bailey D, Baur LA. Adolescent bariatric surgery: ANZ guidance and recommendations. ANZ J Surg. 2011;81(12):854–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Hutch CR, Sandoval D. The role of GLP-1 in the metabolic success of bariatric surgery. Endocrinology. 2017;158(12):4139–51.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Casajoana A, Pujol J, Garcia A, Elvira J, Virgili N, de Oca FJ, et al. Predictive value of gut peptides in T2D remission: randomized controlled trial comparing metabolic gastric bypass, sleeve gastrectomy and greater curvature plication. Obes Surg. 2017;27(9):2235–45.PubMedCrossRefGoogle Scholar
  44. 44.
    Blaha MJ, Gebretsadik T, Shintani A, Elasy TA. Waist circumference, not the metabolic syndrome, predicts glucose deterioration in type 2 diabetes. Obesity (Silver Spring, MD). 2008;16(4):869–74.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Huang X, Liu T, Zhong M, Cheng Y, Hu S, Liu S. Predictors of glycemic control after sleeve gastrectomy versus Roux-en-Y gastric bypass: a meta-analysis, meta-regression, and systematic review. Surg Obes Relat Dis. 2018;14(12):1822–31.CrossRefGoogle Scholar
  46. 46.
    Dixon JB, Chuang LM, Chong K, Chen SC, Lambert GW, Straznicky NE, et al. Predicting the glycemic response to gastric bypass surgery in patients with type 2 diabetes. Diabetes Care. 2013;36(1):20–6.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lee WJ, Hur KY, Lakadawala M, Kasama K, Wong SK, Chen SC, et al. Predicting success of metabolic surgery: age, body mass index, C-peptide, and duration score. Surg Obes Relat Dis. 2013;9(3):379–84.PubMedCrossRefGoogle Scholar
  48. 48.
    Hayes MT, Hunt LA, Foo J, Tychinskaya Y, Stubbs RS. A model for predicting the resolution of type 2 diabetes in severely obese subjects following Roux-en Y gastric bypass surgery. Obes Surg. 2011;21(7):910–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Park JY, Kim YJ. Prediction of diabetes remission in morbidly obese patients after Roux-en-Y gastric bypass. Obes Surg. 2016;26(4):749–56.PubMedCrossRefGoogle Scholar
  50. 50.
    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.CrossRefGoogle Scholar
  51. 51.
    Carlsson LM, Peltonen M, Ahlin S, Anveden A, Bouchard C, Carlsson B, et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N Engl J Med. 2012;367(8):695–704.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Livingston EH. Inadequacy of BMI as an indicator for bariatric surgery. JAMA. 2012;307(1):88–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Yokoyama H, Okudaira M, Otani T, Watanabe C, Takaike H, Miuira J, et al. High incidence of diabetic nephropathy in early-onset Japanese NIDDM patients. Risk analysis. Diabetes Care. 1998;21(7):1080–5.PubMedCrossRefGoogle Scholar
  54. 54.
    The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. 1995;44(8):968–83.Google Scholar
  55. 55.
    Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238(4):467–84; discussion 84–5.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Jimenez A, Casamitjana R, Flores L, Delgado S, Lacy A, Vidal J. GLP-1 and the long-term outcome of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery in morbidly obese subjects. Ann Surg. 2013;257(5):894–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Kadera BE, Lum K, Grant J, Pryor AD, Portenier DD, DeMaria EJ. Remission of type 2 diabetes after Roux-en-Y gastric bypass is associated with greater weight loss. Surg Obes Relat Dis. 2009;5(3):305–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Sugerman HJ, Wolfe LG, Sica DA, Clore JN. Diabetes and hypertension in severe obesity and effects of gastric bypass-induced weight loss. Ann Surg. 2003;237(6):751–6; discussion 7–8.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Khanna V, Malin SK, Bena J, Abood B, Pothier CE, Bhatt DL, et al. Adults with long-duration type 2 diabetes have blunted glycemic and beta-cell function improvements after bariatric surgery. Obesity (Silver Spring, MD). 2015;23(3):523–6.CrossRefGoogle Scholar
  60. 60.
    Lee WJ, Almulaifi A, Tsou JJ, Ser KH, Lee YC, Chen SC. Laparoscopic sleeve gastrectomy for type 2 diabetes mellitus: predicting the success by ABCD score. Surg Obes Relat Dis. 2015;11(5):991–6.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Still CD, Wood GC, Benotti P, Petrick AT, Gabrielsen J, Strodel WE, et al. Preoperative prediction of type 2 diabetes remission after Roux-en-Y gastric bypass surgery: a retrospective cohort study. Lancet Diabetes Endocrinol. 2014;2(1):38–45.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Aminian A, Brethauer SA, Kashyap SR, Kirwan JP, Schauer PR. DiaRem score: external validation. Lancet Diabetes Endocrinol. 2014;2(1):12–3.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Wood GC, Mirshahi T, Still CD, Hirsch AG. Association of DiaRem score with cure of type 2 diabetes following bariatric surgery. JAMA Surg. 2016;151(8):779–81.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Tharakan G, Scott R, Szepietowski O, Miras AD, Blakemore AI, Purkayastha S, et al. Limitations of the DiaRem score in predicting remission of diabetes following Roux-En-Y gastric bypass (RYGB) in an ethnically diverse population from a single institution in the UK. Obes Surg. 2017;27(3):782–6.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Aminian A, Brethauer SA, Andalib A, Nowacki AS, Jimenez A, Corcelles R, et al. Individualized metabolic surgery score: procedure selection based on diabetes severity. Ann Surg. 2017;266(4):650–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Aminian A, Andalib A. Individualized metabolic surgery (IMS) score. Surg Obes Relat Dis. 2018;14(12):1921–2.PubMedCrossRefGoogle Scholar
  67. 67.
    Cleveland Clinic Lerner Research Institute. Individualized metabolic surgery score; 2018. Available from: http://riskcalc.org/Metabolic_Surgery_Score/.
  68. 68.
    Debedat J, Sokolovska N, Coupaye M, Panunzi S, Chakaroun R, Genser L, et al. Long-term relapse of type 2 diabetes after Roux-en-Y gastric bypass: prediction and clinical relevance. Diabetes Care. 2018;41(10):2086–95.PubMedCrossRefGoogle Scholar
  69. 69.
    Gregg EW, Sattar N, Ali MK. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 2016;4(6):537–47.PubMedCrossRefGoogle Scholar
  70. 70.
    Stokes A, Preston SH. Deaths attributable to diabetes in the United States: comparison of data sources and estimation approaches. PLoS One. 2017;12(1):e0170219.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus – mechanisms, management, and clinical considerations. Circulation. 2016;133(24):2459–502.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829–41.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Gallagher EJ, LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev. 2015;95(3):727–48.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Sheng B, Truong K, Spitler H, Zhang L, Tong X, Chen L. The long-term effects of bariatric surgery on type 2 diabetes remission, microvascular and macrovascular complications, and mortality: a systematic review and meta-analysis. Obes Surg. 2017;27(10):2724–32.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, Danaei G. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet. 2014;383(9921):970–83.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Chang AR, Grams ME, Ballew SH, Bilo H, Correa A, Evans M, et al. Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium. BMJ (Clinical research ed). 2019;364:k5301.CrossRefGoogle Scholar
  77. 77.
    Arterburn D, Schauer DP, Wise RE, Gersin KS, Fischer DR, Selwyn CA Jr, et al. Change in predicted 10-year cardiovascular risk following laparoscopic Roux-en-Y gastric bypass surgery. Obes Surg. 2009;19(2):184–9.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Adams TD, Arterburn DE, Nathan DM, Eckel RH. Clinical outcomes of metabolic surgery: microvascular and macrovascular complications. Diabetes Care. 2016;39(6):912–23.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sjostrom L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden A, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297–304.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Miras AD, Chuah LL, Khalil N, Nicotra A, Vusirikala A, Baqai N, et al. Type 2 diabetes mellitus and microvascular complications 1 year after Roux-en-Y gastric bypass: a case-control study. Diabetologia. 2015;58(7):1443–7.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gorman DM, le Roux CW, Docherty NG. The effect of bariatric surgery on diabetic retinopathy: good, bad, or both? Diabetes Metab J. 2016;40(5):354–64.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.CrossRefGoogle Scholar
  83. 83.
    Johnson BL, Blackhurst DW, Latham BB, Cull DL, Bour ES, Oliver TL, et al. Bariatric surgery is associated with a reduction in major macrovascular and microvascular complications in moderately to severely obese patients with type 2 diabetes mellitus. J Am Coll Surg. 2013;216(4):545–56; discussion 56–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kwok CS, Pradhan A, Khan MA, Anderson SG, Keavney BD, Myint PK, et al. Bariatric surgery and its impact on cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Cardiol. 2014;173(1):20–8.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Arterburn DE, Olsen MK, Smith VA, Livingston EH, Van Scoyoc L, Yancy WS Jr, et al. Association between bariatric surgery and long-term survival. JAMA. 2015;313(1):62–70.CrossRefGoogle Scholar
  86. 86.
    Cardoso L, Rodrigues D, Gomes L, Carrilho F. Short- and long-term mortality after bariatric surgery: a systematic review and meta-analysis. Diabetes Obes Metab. 2017;19(9):1223–32.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kim J, Eisenberg D, Azagury D, Rogers A, Campos GM. American Society for Metabolic and Bariatric Surgery position statement on long-term survival benefit after metabolic and bariatric surgery. Surg Obes Relat Dis. 2016;12(3):453–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Maciejewski ML, Livingston EH, Smith VA, Kavee AL, Kahwati LC, Henderson WG, et al. Survival among high-risk patients after bariatric surgery. JAMA. 2011;305(23):2419–26.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Angrisani L, Santonicola A, Iovino P, Vitiello A, Zundel N, Buchwald H, et al. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014. Obes Surg. 2017;27(9):2279–89.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kehagias I, Karamanakos SN, Argentou M, Kalfarentzos F. Randomized clinical trial of laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy for the management of patients with BMI <50 kg/m2. Obes Surg. 2011;21(11):1650–6.CrossRefGoogle Scholar
  91. 91.
    Tang Q, Sun Z, Zhang N, Xu G, Song P, Xu L, et al. Cost-effectiveness of bariatric surgery for type 2 diabetes mellitus: a randomized controlled trial in China. Medicine (Baltimore). 2016;95(20):e3522.CrossRefGoogle Scholar
  92. 92.
    Murphy R, Tsai P, Jullig M, Liu A, Plank L, Booth M. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917–25.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Keidar A, Hershkop KJ, Marko L, Schweiger C, Hecht L, Bartov N, et al. Roux-en-Y gastric bypass vs sleeve gastrectomy for obese patients with type 2 diabetes: a randomised trial. Diabetologia. 2013;56(9):1914–8.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kalinowski P, Paluszkiewicz R, Wroblewski T, Remiszewski P, Grodzicki M, Bartoszewicz Z, et al. Ghrelin, leptin, and glycemic control after sleeve gastrectomy versus Roux-en-Y gastric bypass-results of a randomized clinical trial. Surg Obes Relat Dis. 2017;13(2):181–8.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Peterli R, Wolnerhanssen BK, Peters T, Vetter D, Kroll D, Borbely Y, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss in patients with morbid obesity: the SM-BOSS randomized clinical trial. JAMA. 2018;319(3):255–65.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Salminen P, Helmio M, Ovaska J, Juuti A, Leivonen M, Peromaa-Haavisto P, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss at 5 years among patients with morbid obesity: the SLEEVEPASS randomized clinical trial. JAMA. 2018;319(3):241–54.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Arterburn D, Wellman R, Emiliano A, Smith SR, Odegaard AO, Murali S, et al. Comparative effectiveness and safety of bariatric procedures for weight loss: a PCORnet cohort study. Ann Intern Med. 2018;169(11):741–50.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Sudan R, Jain-Spangler K. Tailoring bariatric surgery: sleeve gastrectomy, Roux-en-Y gastric bypass and biliopancreatic diversion with duodenal switch. J Laparoendosc Adv Surg Tech A. 2018;28(8):956–61.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Khoraki J, Moraes MG, Neto APF, Funk LM, Greenberg JA, Campos GM. Long-term outcomes of laparoscopic adjustable gastric banding. Am J Surg. 2018;215(1):97–103.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Mazzini GS, Khoraki J, Brownning MG, et al. Virginia is not Switzerland: challenging the external validity of the European randomized controlled trials comparing laparoscopic gastric bypass and sleeve gastrectomy. J Am Coll Surg. 2018;227(4):e76–7.CrossRefGoogle Scholar
  101. 101.
    Kodama S, Fujihara K, Horikawa C, Harada M, Ishiguro H, Kaneko M, et al. Network meta-analysis of the relative efficacy of bariatric surgeries for diabetes remission. Obes Rev. 2018;19(12):1621–9.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Puzziferri N, Roshek TB 3rd, Mayo HG, Gallagher R, Belle SH, Livingston EH. Long-term follow-up after bariatric surgery: a systematic review. JAMA. 2014;312(9):934–42.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Mostazir M, Taylor RS, Henley W, Watkins E. An overview of statistical methods for handling non-adherence to intervention protocol in randomised control trials (RCTs): a methodological review. J Clin Epidemiol. 2019;108:121–31.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Sedgwick P. Intention to treat analysis versus per protocol analysis of trial data. BMJ (Clinical research ed). 2015;350:h681.Google Scholar
  105. 105.
    Vist GE, Bryant D, Somerville L, Birminghem T, Oxman AD. Outcomes of patients who participate in randomized controlled trials compared to similar patients receiving similar interventions who do not participate. Cochrane Database Syst Rev. 2008;(3):Mr000009.Google Scholar
  106. 106.
    Clarke M, Loudon K. Effects on patients of their healthcare practitioner’s or institution’s participation in clinical trials: a systematic review. Trials. 2011;12:16.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Shoar S, Saber AA. Long-term and midterm outcomes of laparoscopic sleeve gastrectomy versus Roux-en-Y gastric bypass: a systematic review and meta-analysis of comparative studies. Surg Obes Relat Dis. 2017;13(2):170–80.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Leyba JL, Llopis SN, Aulestia SN. Laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy for the treatment of morbid obesity. A prospective study with 5 years of follow-up. Obes Surg. 2014;24(12):2094–8.CrossRefGoogle Scholar
  109. 109.
    Nelson DW, Blair KS, Martin MJ. Analysis of obesity-related outcomes and bariatric failure rates with the duodenal switch vs gastric bypass for morbid obesity. Arch Surg (Chicago, IL: 1960). 2012;147(9):847–54.Google Scholar
  110. 110.
    Sovik TT, Aasheim ET, Taha O, Engstrom M, Fagerland MW, Bjorkman S, et al. Weight loss, cardiovascular risk factors, and quality of life after gastric bypass and duodenal switch: a randomized trial. Ann Intern Med. 2011;155(5):281–91.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Aasheim ET, Bjorkman S, Sovik TT, Engstrom M, Hanvold SE, Mala T, et al. Vitamin status after bariatric surgery: a randomized study of gastric bypass and duodenal switch. Am J Clin Nutr. 2009;90(1):15–22.CrossRefGoogle Scholar
  112. 112.
    Risstad H, Sovik TT, Engstrom M, Aasheim ET, Fagerland MW, Olsen MF, et al. Five-year outcomes after laparoscopic gastric bypass and laparoscopic duodenal switch in patients with body mass index of 50 to 60: a randomized clinical trial. JAMA Surg. 2015;150(4):352–61.CrossRefGoogle Scholar
  113. 113.
    Hedberg J, Sundbom M. Superior weight loss and lower HbA1c 3 years after duodenal switch compared with Roux-en-Y gastric bypass--a randomized controlled trial. Surg Obes Relat Dis. 2012;8(3):338–43.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Dapri G, Cadiere GB, Himpens J. Superobese and super-superobese patients: 2-step laparoscopic duodenal switch. Surg Obes Relat Dis. 2011;7(6):703–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Iannelli A, Schneck AS, Topart P, Carles M, Hebuterne X, Gugenheim J. Laparoscopic sleeve gastrectomy followed by duodenal switch in selected patients versus single-stage duodenal switch for superobesity: case-control study. Surg Obes Relat Dis. 2013;9(4):531–8.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Courcoulas AP, Belle SH, Neiberg RH, Pierson SK, Eagleton JK, Kalarchian MA, et al. Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus treatment: a randomized clinical trial. JAMA Surg. 2015;150(10):931–40.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Nguyen NT, Kim E, Vu S, Phelan M. Ten-year outcomes of a prospective randomized trial of laparoscopic gastric bypass versus laparoscopic gastric banding. Ann Surg. 2018;268(1):106–13.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Adams TD, Davidson LE, Litwin SE, Kim J, Kolotkin RL, Nanjee MN, et al. Weight and metabolic outcomes 12 years after gastric bypass. N Engl J Med. 2017;377(12):1143–55.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ikramuddin S, Korner J, Lee WJ, Thomas AJ, Connett JE, Bantle JP, et al. Lifestyle intervention and medical management with vs without Roux-en-Y gastric bypass and control of hemoglobin A1c, LDL cholesterol, and systolic blood pressure at 5 years in the diabetes surgery study. JAMA. 2018;319(3):266–78.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Purnell JQ, Selzer F, Wahed AS, Pender J, Pories W, Pomp A, et al. Type 2 diabetes remission rates after laparoscopic gastric bypass and gastric banding: results of the longitudinal assessment of bariatric surgery study. Diabetes Care. 2016;39(7):1101–7.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Sala P, Torrinhas RS, Fonseca DC, Heymsfield S, Giannella-Neto D, Waitzberg DL. Type 2 diabetes remission after Roux-en-Y gastric bypass: evidence for increased expression of jejunal genes encoding regenerating pancreatic islet-derived proteins as a potential mechanism. Obes Surg. 2017;27(4):1123–7.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Davidson LE, Yu W, Goodpaster BH, DeLany JP, Widen E, Lemos T, et al. Fat-free mass and skeletal muscle mass five years after bariatric surgery. Obesity (Silver Spring, MD). 2018;26(7):1130–6.CrossRefGoogle Scholar
  123. 123.
    Ferrannini E, Iozzo P, Virtanen KA, Honka MJ, Bucci M, Nuutila P. Adipose tissue and skeletal muscle insulin-mediated glucose uptake in insulin resistance: role of blood flow and diabetes. Am J Clin Nutr. 2018;108(4):749–58.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Albers PH, Bojsen-Moller KN, Dirksen C, Serup AK, Kristensen DE, Frystyk J, et al. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2015;309(5):R510–24.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Mor A, Tabone L, Omotosho P, Torquati A. Improved insulin sensitivity after gastric bypass correlates with decreased total body fat, but not with changes in free fatty acids. Surg Endosc. 2014;28(5):1489–93.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Campos GM, Rabl C, Peeva S, Ciovica R, Rao M, Schwarz JM, et al. Improvement in peripheral glucose uptake after gastric bypass surgery is observed only after substantial weight loss has occurred and correlates with the magnitude of weight lost. J Gastrointest Surg. 2010;14(1):15–23.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Dadson P, Landini L, Helmio M, Hannukainen JC, Immonen H, Honka MJ, et al. Effect of bariatric surgery on adipose tissue glucose metabolism in different depots in patients with or without type 2 diabetes. Diabetes Care. 2016;39(2):292–9.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Immonen H, Hannukainen JC, Iozzo P, Soinio M, Salminen P, Saunavaara V, et al. Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients. J Hepatol. 2014;60(2):377–83.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Kim MK, Lee HC, Kwon HS, Baek KH, Kim EK, Lee KW, et al. Visceral obesity is a negative predictor of remission of diabetes 1 year after bariatric surgery. Obesity (Silver Spring, MD). 2011;19(9):1835–9.CrossRefGoogle Scholar
  130. 130.
    Merlotti C, Ceriani V, Morabito A, Pontiroli AE. Subcutaneous fat loss is greater than visceral fat loss with diet and exercise, weight-loss promoting drugs and bariatric surgery: a critical review and meta-analysis. Int J Obes (2005). 2017;41(5):672–82.CrossRefGoogle Scholar
  131. 131.
    Sinclair P, Brennan DJ, le Roux CW. Gut adaptation after metabolic surgery and its influences on the brain, liver and cancer. Nat Rev Gastroenterol Hepatol. 2018;15(10):606–24.PubMedCrossRefGoogle Scholar
  132. 132.
    Albaugh VL, Flynn CR, Cai S, Xiao Y, Tamboli RA, Abumrad NN. Early increases in bile acids post Roux-en-Y gastric bypass are driven by insulin-sensitizing, secondary bile acids. J Clin Endocrinol Metab. 2015;100(9):E1225–33.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Magkos F, Bradley D, Eagon JC, Patterson BW, Klein S. Effect of Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding on gastrointestinal metabolism of ingested glucose. Am J Clin Nutr. 2016;103(1):61–5.PubMedCrossRefGoogle Scholar
  134. 134.
    Isbell JM, Tamboli RA, Hansen EN, Saliba J, Dunn JP, Phillips SE, et al. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care. 2010;33(7):1438–42.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Shah M, Laurenti MC, Man CD, Ma J, Cobelli C, Rizza RA, et al. Contribution of endogenous glucagon-like Peptide-1 to changes in glucose metabolism and islet function in people with type 2 diabetes four weeks after roux-en-Y gastric bypass (RYGB). Metab Clin Exp. 2019;93:10–7.PubMedCrossRefGoogle Scholar
  136. 136.
    Kohli R, Bradley D, Setchell KD, Eagon JC, Abumrad N, Klein S. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab. 2013;98(4):E708–12.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Jahansouz C, Xu H, Hertzel AV, Serrot FJ, Kvalheim N, Cole A, et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann Surg. 2016;264:1022–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Zhai H, Li Z, Peng M, Huang Z, Qin T, Chen L, et al. Takeda G protein-coupled receptor 5-mechanistic target of rapamycin complex 1 signaling contributes to the increment of glucagon-like peptide-1 production after Roux-en-Y gastric bypass. EBioMedicine. 2018;32:201–14.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Ullmer C, Alvarez Sanchez R, Sprecher U, Raab S, Mattei P, Dehmlow H, et al. Systemic bile acid sensing by G protein-coupled bile acid receptor 1 (GPBAR1) promotes PYY and GLP-1 release. Br J Pharmacol. 2013;169(3):671–84.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Roesch SL, Styer AM, Wood GC, Kosak Z, Seiler J, Benotti P, et al. Perturbations of fibroblast growth factors 19 and 21 in type 2 diabetes. PLoS One. 2015;10(2):e0116928.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Chavez-Talavera O, Baud G, Spinelli V, Daoudi M, Kouach M, Goossens JF, et al. Roux-en-Y gastric bypass increases systemic but not portal bile acid concentrations by decreasing hepatic bile acid uptake in minipigs. Int J Obes (2005). 2017;41(4):664–8.CrossRefGoogle Scholar
  142. 142.
    Jammu GS, Sharma R. A 7-year clinical audit of 1107 cases comparing sleeve gastrectomy, Roux-En-Y gastric bypass, and mini-gastric bypass, to determine an effective and safe bariatric and metabolic procedure. Obes Surg. 2016;26(5):926–32.CrossRefGoogle Scholar
  143. 143.
    Bhasker AG, Remedios C, Batra P, Sood A, Shaikh S, Lakdawala M. Predictors of remission of T2DM and metabolic effects after laparoscopic Roux-en-y gastric bypass in obese Indian diabetics-a 5-year study. Obes Surg. 2015;25(7):1191–7.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Adams TD, Davidson LE, Litwin SE, Kolotkin RL, LaMonte MJ, Pendleton RC, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308(11):1122–31.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Alexandrides TK, Skroubis G, Kalfarentzos F. Resolution of diabetes mellitus and metabolic syndrome following Roux-en-Y gastric bypass and a variant of biliopancreatic diversion in patients with morbid obesity. Obes Surg. 2007;17(2):176–84.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Hall TC, Pellen MG, Sedman PC, Jain PK. Preoperative factors predicting remission of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery for obesity. Obes Surg. 2010;20(9):1245–50.CrossRefGoogle Scholar
  147. 147.
    Torquati A, Lutfi R, Abumrad N, Richards WO. Is Roux-en-Y gastric bypass surgery the most effective treatment for type 2 diabetes mellitus in morbidly obese patients? J Gastrointest Surg. 2005;9(8):1112–6; discussion 7–8.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Simonson DC, Halperin F, Foster K, Vernon A, Goldfine AB. Clinical and patient-centered outcomes in obese patients with type 2 diabetes 3 years after randomization to Roux-en-Y gastric bypass surgery versus intensive lifestyle management: the SLIMM-T2D study. Diabetes Care. 2018;41(4):670–9.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Cummings DE, Arterburn DE, Westbrook EO, Kuzma JN, Stewart SD, Chan CP, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia. 2016;59(5):945–53.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jad Khoraki
    • 1
  • Matthew G. Browning
    • 1
  • Bernardo M. Pessoa
    • 1
  • Guilherme M. Campos
    • 1
    Email author
  1. 1.Division of Bariatric and Gastrointestinal Surgery, Department of SurgeryVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations