Advertisement

Gastric Bypass pp 375-393 | Cite as

The Gut and Type 2 Diabetes Mellitus

  • Stephen BoyceEmail author
Chapter
  • 42 Downloads

Abstract

Diabetes is a chronic progressive disease that leads to end-organ damage with significant morbidity and mortality, which the goal of current therapy is to delay it. It has long been recognized that certain gastrointestinal operations have a profound ameliorative effect on type 2 diabetes mellitus (T2DM) with many patients achieving complete and durable remission. The rapid time course and disproportional degree of T2DM improvement after Roux-en-Y gastric bypass (RNYGB) compared with equivalent weight loss from other interventions suggest a weight-independent effect on glucose homeostasis. The gastrointestinal tract has a crucial role in regulating energy balance and glucose homeostasis through the actions of specialized intestinal mucosal enteroendocrine cells that exert actions on peripheral target organs including the liver and endocrine pancreas. Understanding interactions between the gastrointestinal tract, brain, and end organs involved and glucose homeostasis will hopefully lead to not only better metabolic operations but also to pharmacological solutions for complete and durable resolution of severe obesity and its attendant comorbidities including T2DM.

Keywords

Bariatric surgery Gastric bypass Ghrelin Glucagon-like-polypeptide-1 GLP-1 Type 2 diabetes mellitus T2DM Peptide YY PYY Glucose-dependent insulinotropic polypeptide GIP 

References

  1. 1.
    Koopman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43.CrossRefGoogle Scholar
  2. 2.
    Zimmet P. The burden of type 2 diabetes: are we doing enough? Diabetes Metab. 2003;29(4 Pt 2):6S9–18.PubMedGoogle Scholar
  3. 3.
    Rubino F, Schauer PR, Kaplan LM, Cummings DE. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu Rev Med. 2010;61:393–411.PubMedCrossRefGoogle Scholar
  4. 4.
    Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299:316–23.PubMedGoogle Scholar
  5. 5.
    Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;355:1577–85.CrossRefGoogle Scholar
  6. 6.
    Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ikramuddin S, Komer J, Lee WJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension and hyperlipidemia: the diabetes surgery study randomized clinical trial. JAMA. 2013;309:2240–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Courcoulas AP, Goodpaster BH, Eagleton JK, et al. Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial. JAMA Surg. 2014;149:707–15.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Halperin F, Ding SA, Simonson DC, et al. Roux-en-Y gastric bypass or lifestyle with intensive medical management in patients with type 2 diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg. 2014;149:716–26.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Liang Z, Wu Q, Chen B, Yu P, Zhao H, Quyang X. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2013;101:50–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Wentworth JM, Playfair J, Laurie C, et al. Multidisciplinary diabetes care with and without bariatric surgery in overweight people: a randomized controlled trial. Lancet Diabetes Endocrinol. 2014;2:545–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Parikh M, Chung M, Sheth S, et al. Randomized pilot trial of bariatric surgery versus intensive medical weight management on diabetes remission in type 2 diabetic patients who do NOT meet NIH criteria for surgery and the role of soluble RAGE as a novel biomarker of success. Ann Surg. 2014;260:617–22.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Schauer PR, Bhatt DL, Kirwan JP, et al. STAMPEDE investigators. Bariatric surgery versus intensive medical therapy for diabetes 3-year outcomes. N Engl J Med. 2014;370:2002–13.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric –metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomized controlled trial. Lancet. 2015;386:964–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Ikramuddin S, Billington CJ, Lee WJ, et al. Roux-en-Y gastric bypass for diabetes (the Diabetes Surgery Study); 2-year outcomes of a 5-year, randomized, controlled trial. Lancet Diabetes Endocrinol. 2015;3:413–22.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ding SA, Simonson DC, Wewalka M, et al. Adjustable gastric band surgery or medical management in patients with type 2 diabetes: a randomized clinical trial. J Clin Endocrinol Metab. 2015;100:2545–56.CrossRefGoogle Scholar
  17. 17.
    Cummings DE, Arterburn DE, Westbrook EO, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomized controlled trial. Diabetologia. 2016;59:945–53.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Courcoulas AP, Belle SH, Neiberg RH, et al. Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus treatment: a randomized clinical trial. JAMA Surg. 2015;150:931–40.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gloy VL, Briel M, Bhatt DL, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomized controlled trials. BMJ. 2013;347:f5934.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Friedman NM, Sancetta AJ, Magovern GJ. The amelioration of diabetes mellitus following subtotal gastrectomy. Surg Gynecol Obstet. 1955;100:201–4.PubMedGoogle Scholar
  21. 21.
    Bittner R, Bittner B, Beger HG. Homeostasis of glucose and gastric resection. The influence of the food passage through the duodenum. Z Gastroenterol. 1981;19:698–707.PubMedGoogle Scholar
  22. 22.
    Forgacs S, Halmos T. Improvement of glucose tolerance in diabetics following gastrectomy. Z Gastroenterol. 1973;11:293–6.PubMedGoogle Scholar
  23. 23.
    Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.CrossRefGoogle Scholar
  24. 24.
    Pories WJ, Swanson MS, MacDonald DG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222:339–50.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Schauer PR, Burguera B, Ikramuddin S, et al. Effect of laparoscopic Roux-en-Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238:467–84.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Sjostrom L, Lindroos AK, Peltonen M, Swedish Obese Subjects Study Scientific Group, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Carlisson LM, Peltonen M, Ahlin S, et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N Engl J Med. 2012;367:695–704.CrossRefGoogle Scholar
  28. 28.
    Sjoholm K, Pajunen P, Jaconson P, et al. Incidence and remission of type 2 diabetes in relation to degree of obesity at baseline and 2 year weight change: the Swedish obese subjects (SOS) study. Diabetologia. 2015;58:1448–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Rubino F, Marescaux J. Effect of duodenal- jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239:1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Thaler JP, Cummings DE. Mini review: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150:2518–25.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and body- weight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2:152–64.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Salehi M, Woods SC, D’Alessio DA. Gastric bypass alters both glucose-dependent and glucose-independent regulation of islet hormone secretion. Obesity (Silver Spring). 2015;23:2046–52.CrossRefGoogle Scholar
  33. 33.
    Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–38.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dirksen C, Jørgensen NB, Bojsen-Møller KN, et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia. 2012;55:1890–901.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Breen DM, Rasmussen BA, Kokorovic A, Wang R, Cheung GW, Lam TK. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med. 2012;18:950–5.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of ver- tical sleeve gastrectomy. Nature. 2014;509:183–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra41.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Saeidi N, Meoli L, Nestoridi E, et al. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science. 2013;341:406–10.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sjostrom L, Peltonen M, Jacobson P, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311:2297–304.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Rubino S, Nathan DM, Eckel RH, Schauer PR, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39:861–77.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Arterburn DE, Bogart A, Sherwood NE, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013;23:93–102.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cohen RV, Pinheiro JC, Schiavon CA, Salles JE, Wajchenberg BL, Cummings DE. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care. 2012;35:1420–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Adams TD, Davidson LE, Litwin SE, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308:1122–31.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Brethauer SA, Aminian A, Romero-Talamás H, et al. Can diabetes be surgically cured? Long- term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258:628–36.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hsu CC, Almulaifi A, Chen JC, et al. Effect of bariatric surgery vs medical treatment on type 2 diabetes in patients with body mass index lower than 35: five-year outcomes. JAMA Surg. 2015;150:1117–24.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Sjostrom L, Gummesson A, Sjöström CD, Swedish Obese Subjects Study, et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 2009;10:653–62.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Sjostrom L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Sjostrom L, Narbro K, Sjostrom CD, Swedish Obese Subjects Study, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–52.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Adams TD, Gress RE, Smith SC, et al. Long- term mortality after gastric bypass surgery. N Engl J Med. 2007;357:753–61.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Arterburn DE, Olsen MK, Smith VA, et al. Association between bariatric surgery and long- term survival. JAMA. 2015;313:62–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Flum DR, Belle SH, King WC, Longitudinal Assessment of Bariatric Surgery (LABS) Consortium, et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N Engl J Med. 2009;361:445–54.PubMedCrossRefGoogle Scholar
  52. 52.
    Birkmeyer NJ, Dimick JB, Share D, Michigan Bariatric Surgery Collaborative, et al. Hospital complication rates with bariatric surgery in Michigan. JAMA. 2010;304:435–42.CrossRefGoogle Scholar
  53. 53.
    Altieri MS, Yang J, Telem DA, et al. Lap band outcomes from 19,221 patients across centers and over a decade within the state of New York. Surg Endosc. 2016;30:1725–32.  https://doi.org/10.1007/s00464-015-4402-8.CrossRefPubMedGoogle Scholar
  54. 54.
    Hutter MM, Schirmer BD, Jones DB, et al. First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. Ann Surg. 2011;254:410–20; discussion 420–422.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Nguyen NT, Slone JA, Nguyen XM, Hartman JS, Hoyt DB. A prospective randomized trial of laparoscopic gastric bypass versus laparoscopic adjustable gastric banding for the treatment of morbid obesity: outcomes, quality of life, and costs. Ann Surg. 2009;250:631–41.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Isbell JM, Tamboli RA, Hansen EN, et al. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care. 2010;33:1438–42.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Laferrere B, Teixeira J, McGinty J, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:2479–85.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lim EL, Hollingsworth KG, Aribasale B, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes is associated with decrease in pancreas and liver fat levels. Diabetologia. 2011;54:2506–14.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Cummings DE. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes (Lond). 2009;33:533–40.CrossRefGoogle Scholar
  60. 60.
    Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244:741–9.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240:236–42.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Cummings DE, Overduin J, Shannon MH, et al. Hormonal mechanisms of weight loss and diabetes resolution after bariatric surgery. Surg Obes Relat Dis. 2005;1:358–68.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth hormone– releasing acylated peptide from stomach. Nature. 1999;402:656–60.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409:194–8.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000;141:4325–8.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ariyasu H, Takaya K, Tagami T, et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab. 2001;86:4753–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ahren B, Holst JJ, Efendic S. Anti-diabetogenic action of cholecystokinin-8 in type 2 diabetes. J Clin Endocrinol Metab. 2000;85:1043–8.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Cummings DE, Shannon MH. Roles for ghrelin in the regulation of appetite and body weight. Arch Surg. 2003;138:389–96.PubMedCrossRefGoogle Scholar
  70. 70.
    Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Cummings DE, Frayo RS, Marmonier C, et al. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time-and food-related cues. Am J Physiol Endocrinol Metab. 2004;287:E297–304.PubMedCrossRefGoogle Scholar
  72. 72.
    Cummings DE, Foster-Schubert KE, Overduin J. Ghrelin and energy balance: focus on current controversies. Curr Drug Targets. 2005;6:153–69.PubMedCrossRefGoogle Scholar
  73. 73.
    Dezaki K, et al. Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2+ signaling in beta-cells: implication in the glycemic control in rodents. Diabetes. 2004;53:3142–51.PubMedCrossRefGoogle Scholar
  74. 74.
    Sun Y, Asnicar M, Saha PK, Chan L, Smith RG. Ablation of ghrelin improves the diabetic but not obese phenotype of ob/ob mice. Cell Metab. 2006;3:379–86.PubMedCrossRefGoogle Scholar
  75. 75.
    Theander-Carrillo C, et al. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest. 2006;116:1983–93.  https://doi.org/10.1172/JCI25811.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Broglio F, Arvat E, Benso A, et al. Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab. 2001;86:5083–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Cummings DE, Weigle DS, Frayo RS, et al. Human plasma ghrelin levels after diet-induced weight loss and gastric bypass surgery. N Engl J Med. 2002;346:1623–30.PubMedCrossRefGoogle Scholar
  78. 78.
    Kuntz E, Pinget M, Damge P. Cholecystokinin octapeptide: a potential growth factor for pancreatic beta cells in diabetic rats. JOP. 2004;5:464–75.PubMedGoogle Scholar
  79. 79.
    Suarez-Pinzon WL, Lakey JR, Brand SJ, Rabinovitch A. Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet beta-cells from pancreatic duct cells and an increase in functional beta-cell mass. J Clin Endocrinol Metab. 2005;90:3401–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Boushey RP, et al. Hypoglycemia, defective islet glucagon secretion, but normal islet mass in mice with a disruption of the gastrin gene. Gastroenterology. 2003;125:1164–74.PubMedCrossRefGoogle Scholar
  81. 81.
    Grong E, Graeslei H, Munkvold B, et al. Gastrin secretion after bariatric surgery-response to a protein-rich mixed meal following Roux-en-Y gastric bypass and sleeve gastrectomy: a pilot study in normoglycemic women. Obes Surg. 2016;26:1448–56.PubMedCrossRefGoogle Scholar
  82. 82.
    Deacon CF, Nauck MA, Meier J, Hucking K, Holst JJ. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab. 2000;85:3575–81.PubMedGoogle Scholar
  83. 83.
    Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide- 1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem. 1993;214:829–35.PubMedCrossRefGoogle Scholar
  84. 84.
    Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest. 2007;117(1):24–32.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol. 2003;17:161–71.PubMedCrossRefGoogle Scholar
  86. 86.
    Kim SJ, et al. GIP stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1 and downregulation of bax expression. J Biol Chem. 2005;280:22297–307.PubMedCrossRefGoogle Scholar
  87. 87.
    Gault VA, et al. Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3)GIP administration improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure in obesity-related diabetes. Diabetes. 2005;54:2436–46.PubMedCrossRefGoogle Scholar
  88. 88.
    Rubino F, Zizzari P, Tomasetto C, et al. The role of the small bowel in the regulation of circulating ghrelin levels and food intake in the obese Zucker rat. Endocrinology. 2005;146:1745–51.PubMedCrossRefGoogle Scholar
  89. 89.
    Cohen RV, Schiavon CA, Pinheiro JS, et al. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22–34 kg/m2. Surg Obes Relat Dis. 2007;3:195–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Ramos AC, Neto MPG, de Souza YM, et al. Laparoscopic duodenal-jejunal exclusion in the treatment of type 2 diabetes mellitus in patients with BMI <30 kg/m2. Obes Surg. 2009;19:307–12.PubMedCrossRefGoogle Scholar
  91. 91.
    Tarnoff M, Sorli C, Rodriguez L, et al. Interim report of a prospective, randomized sham-controlled trial investigating a completely endoscopic duodenal-jejunal bypass sleeve for the treatment of type 2 diabetes. Diabetes. 2008;57:A32.CrossRefGoogle Scholar
  92. 92.
    Tarnoff M, Rodriguez L, Escalona A, et al. Open label, prospective, randomized controlled trial of an endoscopic duodenal-jejunal bypass sleeve versus low calorie diet for preoperative weight loss in bariatric surgery. Surg Endosc. 2009;23:650–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Sorli C, Rodriguez L, Reyes E, et al. Pilot clinical study of an endoscopic, removable duodenal- jejunal bypass liner for the treatment of type 2 diabetes. Diabetes Technol Ther. 2009;11(11):725–32.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang PY, Caspi L, Lam CK, Chari M, Li X, Light PE, Gutierrez-Juarez R, Ang M, Schwartz GJ, Lam TK. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature. 2008;452:1012–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Badman MK, Flier JS. The gut and energy balance: visceral allies in the obesity wars. Science. 2005;307:1909–14.PubMedCrossRefGoogle Scholar
  96. 96.
    Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest. 2007;117:13–23.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature. 2006;444:854–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell. 2007;129:251–62.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lam TK. Neuronal regulation of homeostasis by nutrient sensing. Nat Med. 2010;16:392–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Greenberg D, Smith GP, Gibbs J. Intraduodenal infusions of fats elicit satiety in sham-feeding rats. Am J Physiol. 1990;259:R110–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Matzinger D, Degen L, Drewe J, et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut. 2000;46:688–93.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Cheung GW, Kokorovic A, Lam CK, Chari M, Lam TK. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab. 2009;10:99–109.PubMedCrossRefGoogle Scholar
  103. 103.
    Drewe J, Gadient A, Rovati LC, Beglinger C. Role of circulating cholecystokinin in control of fat-induced inhibition of food intake in humans. Gastroenterology. 1992;102:1654–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Ogawa N, Yamaguchi H, Shimbara T, et al. The vagal afferent pathway does not play a major role in the induction of satiety by intestinal fatty acid in rats. Neurosci Lett. 2008;433:38–42.PubMedCrossRefGoogle Scholar
  105. 105.
    Lal S, Kirkup AJ, Brunsden AM, Thompson DG, Grundy D. Vagal afferent responses to fatty acids of different chain length in the rat. Am J Physiol Gastrointest Liver Physiol. 2001;281:G907–15.PubMedCrossRefGoogle Scholar
  106. 106.
    Randich A, Chandler PC, Mebane HC, et al. Jejunal administration of linoleic acid increases activity of neurons in the paraventricular nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2004;286:R166–73.PubMedCrossRefGoogle Scholar
  107. 107.
    Troy S, Soty M, Ribeiro L, Laval L, Migrenne S, Fioramonti X, Pillot B, Fauveau V, Aubert R, Viollet B, Foretz M, Leclerc J, Duchampt A, Zitoun C, Thorens B, Magnan C, Mithieux G, Andreelli F. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab. 2008;8:201–11.PubMedCrossRefGoogle Scholar
  108. 108.
    De Paula AL, Macedo AL, Prudente AS, et al. Laparoscopic sleeve gastrectomy with ileal interposition (“neuroendocrine brake”)-pilot study of a new operation. Surg Obes Relat Dis. 2006;2:464–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Strader AD, Vahl TP, Jandacek RJ, et al. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab. 2005;288:E447–53.PubMedCrossRefGoogle Scholar
  110. 110.
    Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care. 2003;26:2929–40.PubMedCrossRefGoogle Scholar
  111. 111.
    Cummings DE, Overduin J, Foster-Schubert KE, et al. Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg Obes Relat Dis. 2007;3(2):109–15.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Reimer RA, McBurney MI. Dietary fiber modulates intestinal proglucagon messenger ribo- nucleic acid and postprandial secretion of glucagon-like peptide-1 and insulin in rats. Endocrinology. 1996;137:3948–56.PubMedCrossRefGoogle Scholar
  113. 113.
    Tappenden KA, Thomson AB, Wild GE, McBurney MI. Short-chain fatty acids increase proglucagon and ornithine decarboxylase messenger RNAs after intestinal resection in rats. JPEN J Parenter Enteral Nutr. 1996;20:357–62.PubMedCrossRefGoogle Scholar
  114. 114.
    Tappenden KA, McBurney MI. Systemic short-chain fatty acids rapidly alter gastro- intestinal structure, function, and expression of early response genes. Dig Dis Sci. 1998;43:1526–36.PubMedCrossRefGoogle Scholar
  115. 115.
    Brubaker PL, Anini Y. Direct and indirect mechanisms regulating secretion of glucagon- like peptide-1 and glucagon-like peptide-2. Can J Physiol Pharmacol. 2003;81:1005–12.PubMedCrossRefGoogle Scholar
  116. 116.
    Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ. Tissue and plasma concentrations of amidated and glycine-extended glucagon- like peptide I in humans. Diabetes. 1994;43:535–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001;50:609–13.PubMedCrossRefGoogle Scholar
  118. 118.
    Hansen L, Deacon CF, Orskov C, Holst JJ. Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9- 36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology. 1999;140:5356–63.PubMedCrossRefGoogle Scholar
  119. 119.
    Deacon CF, Nauck MA, Toft-Nielsen M, et al. Both subcutaneously and intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes. 1995;44:1126–31.PubMedCrossRefGoogle Scholar
  120. 120.
    Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric- bypass surgery. N Engl J Med. 2005;353:249–54.PubMedCrossRefGoogle Scholar
  121. 121.
    Patti ME, McMahon G, Mun EC, Bitton A, Holst JJ, Goldsmith J, Hanto DW, Callery M, Arky R, Nose V, Bonner-Weir S, Goldfine AB. Severe hypoglycaemia post-gastric bypass requiring partial pancreatectomy: evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia. 2005;48:2236–40.PubMedCrossRefGoogle Scholar
  122. 122.
    Foster-Schubert KE. Hypoglycemia complicating bariatric surgery: incidence and mechanisms. Curr Opin Endocrinol Diabetes Obes. 2011;18(2):129–33.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Collie NL, Zhu Z, Jordan S, Reeve JR. Oxyntomodulin stimulates intestinal glucose uptake in rats. Gastroenterology. 1997;112:1961–70.PubMedCrossRefGoogle Scholar
  124. 124.
    Jarrousse C, Bataille D, Jeanrenaud B. A pure enteroglucagon, oxyntomodulin (glucagon 37), stimulates insulin release in perfused rat pancreas. Endocrinology. 1984;115:102–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Wynne K, Park AJ, Small CJ, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond). 2006;30(12):1729–36.CrossRefGoogle Scholar
  126. 126.
    Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes. 2005;54:2390–5.PubMedCrossRefGoogle Scholar
  127. 127.
    Cheeseman CI, Tsang R. The effect of gastric inhibitory polypeptide and glucagon like peptides on intestinal hexose transport. Am J Physiol Gastrointest Liver Physiol. 1996;271:G477–82.CrossRefGoogle Scholar
  128. 128.
    Jeppesen PB, Hartmann B, Thulesen J, et al. Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology. 2001;120:806–15.PubMedCrossRefGoogle Scholar
  129. 129.
    le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V, Shurey S, Ghatei MA, Patel AG, Bloom SR. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis. 2007;3:597–601.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Korner J, Bessler M, Cirilo LJ, Conwell IM, Daud A, Restuccia NL, Wardlaw SL. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab. 2005;90:359–65.PubMedCrossRefGoogle Scholar
  132. 132.
    Laferrère B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, Hart AB, Olivan B. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–16.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Morínigo R, Moizé V, Musri M, Lacy AM, Navarro S, Marín JL, Delgado S, Casamitjana R, Vidal J. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2006;91:1735–40.PubMedCrossRefGoogle Scholar
  134. 134.
    Rodieux F, Giusti V, D’Alessio DA, Suter M, Tappy L. Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release. Obesity (Silver Spring). 2008;16:298–305.CrossRefGoogle Scholar
  135. 135.
    Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJ. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93:210–5.PubMedCrossRefGoogle Scholar
  136. 136.
    Vincent RP, le Roux CW. Changes in gut hormones after bariatric surgery. Clin Endocrinol (Oxf). 2008;69:173–9.CrossRefGoogle Scholar
  137. 137.
    Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418:650–4.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Koopmans HS, Sclafani A, Fichtner C, Aravich PF. The effects of ileal transposition on food intake and body weight loss in VMH-obese rats. Am J Clin Nutr. 1982;35:284–93.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Patriti A, Facchiano E, Annetti C, Aisa MC, Galli F, Fanelli C, Donini A. Early improvement of glucose tolerance after ileal transposition in a non-obese type 2 diabetes rat model. Obes Surg. 2005;15:1258–64.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Patriti A, Aisa MC, Annetti C, Sidoni A, Galli F, Ferri I, Gullà N, Donini A. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and -cell function in Gotokakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery. 2007;142:74–85.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    DePaula AL, Macedo AL, Rassi N, et al. Laparoscopic treatment of type 2 diabetes mellitus for patients with a body mass index less than 35. Surg Endosc. 2008;22:706–16.PubMedCrossRefGoogle Scholar
  143. 143.
    Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity. 2009;17:1671–7.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Ding L, Yang L, Wang Z, et al. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B. 2015;5(2):135–44.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–5.PubMedCrossRefGoogle Scholar
  146. 146.
    Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–8.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Wang H, Chen J, Holister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3:543–53.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of SurgeryTurkey Creek Medical CenterKnoxvilleUSA

Personalised recommendations