Advertisement

Gastric Bypass: Mechanisms of Functioning

  • Carel W. le RouxEmail author
  • Piriyah Sinclair
Chapter
  • 35 Downloads

Abstract

This chapter focusses on the underlying mechanisms of functioning of the Roux-en-Y gastric bypass (RYGB) – from its benefits (weight loss and comorbidity improvement) through to its complications. RYGB is no longer considered a purely mechanically restrictive and malabsorptive procedure but a metabolic procedure most likely to involve complex gut-brain signalling and physiological changes. It is likely that the gut has endocrine and metabolic functions that regulate appetite, satiety, weight and glucose metabolism. The full extent of these mechanisms is still not fully understood. Here we explore the current body of evidence.

Keywords

Roux-en-Y gastric bypass Function Weight loss Comorbidity resolution Complications 

References

  1. 1.
    Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.CrossRefGoogle Scholar
  2. 2.
    Olbers T, Gronowitz E, Werling M, Marlid S, Flodmark CE, Peltonen M, et al. Two-year outcome of laparoscopic Roux-en-Y gastric bypass in adolescents with severe obesity: results from a Swedish Nationwide Study (AMOS). Int J Obes. 2012;36(11):1388–95.CrossRefGoogle Scholar
  3. 3.
    Sorensen TIA. Weight loss causes increased mortality: pros. Obes Rev. 2003;4(1):3–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Gerstein HC. Do lifestyle changes reduce serious outcomes in diabetes? N Engl J Med. 2013;369(2):189–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011;365(17):1597–604.PubMedCrossRefGoogle Scholar
  6. 6.
    Hofmann W, van Koningsbruggen GM, Stroebe W, Ramanathan S, Aarts H. As pleasure unfolds. Hedonic responses to tempting food. Psychol Sci. 2010;21(12):1863–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Abdeen G, Le Roux CW. Mechanism underlying the weight loss and complications of Roux-en-Y gastric bypass. Review Obes Surg. 2016;26:410–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Fandriks L. The role of the smaller stomach. 31-8-2011. Postgraduate course B, XVI World Congress of the International Federation for the Surgery of Obesity and Metabolic Disorders, Hamburg, Germany. Ref Type: Report.Google Scholar
  9. 9.
    Le Roux CW, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Dixon AF, Dixon JB, O’Brien PE. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J Clin Endocrinol Metab. 2005;90:813–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Miras AD, et al. Gastric bypass surgery for obesity decreases the reward value of a sweetfat stimulus as assessed in a progressive ratio task. Am J Clin Nutr. 2012;96:467–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Wilson-Perez HE, et al. The effect of vertical sleeve gastrectomy on food choice in rats. Int J Obes. 2012;37:288–2.CrossRefGoogle Scholar
  13. 13.
    Halmi KA, Mason E, Falk JR, Stunkard A. Appetitive behavior after gastric bypass for obesity. Int J Obes. 1981;5(5):457–64.PubMedGoogle Scholar
  14. 14.
    Zheng H, Shin AC, Lenard NR, Townsend RL, Patterson LM, Sigalet DL, et al. Meal patterns, satiety, and food choice in a rat model of Roux-en-Y gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1273–82.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lutz TA, Bueter M. Physiological mechanisms behind Roux-en-Y gastric bypass surgery. Dig Surg. 2014;31(1):13–24.PubMedCrossRefGoogle Scholar
  16. 16.
    Le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246:780–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Miller GD, Norris A, Fernandez A. Changes in nutrients and food groups intake following laparoscopic Roux-en-Y gastric bypass (RYGB). Obes Surg. 2014;24(11):1926–32. 1–7. 23.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Xanthakos SA. Nutritional deficiencies in obesity and after bariatric surgery. Pediatr Clin N Am. 2009;56:1105–21.CrossRefGoogle Scholar
  19. 19.
    Flancbaum L, Choban P, Bradley LR, BURGE JC. Changes in measured resting energy expenditure after Roux-en-Y gastric bypass for clinically severe obesity. Surgery. 1997;122:943–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Moize V, Geliebter A, Gluck ME, et al. Obese patients have inadequate protein intake related to protein intolerance up to 1 year following Roux-en-Y gastric bypass. Obes Surg. 2003;13:23–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Warde-Kamar J, Rogers M, Flancbaum L, Laferrère B. Calorie intake and meal patterns up to 4 years after Roux-en-Y gastric bypass surgery. Obes Surg. 2004;14:1070–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Heneghan HM, Yimcharoen P, Brethauer SA, Kroh M, Chand B. Influence of pouch and stoma size on weight loss after gastric bypass. Surg Obes Relat Dis. 2012;8(4):408–15.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bueter M, Lowenstein C, Ashrafian H, Hillebrand J, Bloom S, Olbers T, et al. Vagal sparing surgical technique but not stoma size affects body weight loss in rodent model of gastric bypass. Obes Surg. 2010;20(5):616–22.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Campos GM, Rabl C, Mulligan K. FActors associated with weight loss after gastric bypass. Arch Surg. 2008;143(9):877–84.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Topart P, Becouarn G, Ritz P. Pouch size after gastric bypass does not correlate with weight loss outcome. Obes Surg. 2011;21(9):1350–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Madan A, Tichansky D, Phillips J. Does pouch size matter? Obes Surg. 2007;17(3):317–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Laurenius A, Larsson I, Bueter M, Melanson KJ, Bosaeus I, Forslund HB, et al. Changes in eating behaviour and meal pattern following Roux-en-Y gastric bypass. Int J Obes. 2012;36(3):348–55.CrossRefGoogle Scholar
  28. 28.
    Gould J, Garren M, Boll V, Starling J. The impact of circular stapler diameter on the incidence of gastrojejunostomy stenosis and weight loss following laparoscopic Roux-en-Y gastric bypass. Surg Endosc. 2006;20(7):1017–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Bueter M, Lowenstein C, Olbers T, et al. Gastric bypass increases energy expenditure in rats. Gastroenterology. 2010;138:1845–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Mumphrey MB, Patterson LM, Zheng H, Berthoud HR. Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats. Neurogastroenterol Motil. 2013;25:e70–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Taqi E, Wallace LE, de Heuvel E, et al. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model. J Pediatr Surg. 2010;45:987–95.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    le Roux CW, Borg C, Wallis K, et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg. 2010;252:50–6.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Pournaras DJ, le Roux CW. Ghrelin and metabolic surgery. Int J Pept. 2010;2010:733–43.CrossRefGoogle Scholar
  34. 34.
    Berthoud HR, Shin AC, Zheng H. Obesity surgery and gut-brain communication. Physiol Behav. 2011;105(1):106–19.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chambers AP, Kirchner H, Wilson-Perez HE, et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology. 2013;144:50–2. e55.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Dar MS, Chapman WH III, Pender JR, Drake AJ III, O’Brien K, Tanenberg RJ, et al. GLP-1 response to a mixed meal: what happens 10 years after Roux-en-Y gastric bypass (RYGB)? Obes Surg. 2012;22(7):1077–83.PubMedCrossRefGoogle Scholar
  37. 37.
    Meguid MM, Glade MJ, Middleton FA. Weight regain after Roux-en-Y: a significant 20% complication related to PYY. Nutrition. 2008;24(9):832–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Dirksen C, Jorgensen NB, Bojsen-Moller KN, Kielgast U, Jacobsen SH, Clausen TR, et al. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int J Obes. 2013 Nov;37(11):1452–9.CrossRefGoogle Scholar
  39. 39.
    Batterham RL, Cohen MA, Ellis SM, le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349(10):941–8.CrossRefGoogle Scholar
  40. 40.
    Chandarana K, Gelegen C, Karra E, Choudhury AI, Drew ME, Fauveau V, et al. Diet and gastrointestinal bypass-Induced weight loss the roles of ghrelin and peptide YY. Diabetes. 2011;60(3):810–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sloth B, Holst JJ, Flint A, Gregersen NT, Astrup A. Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am J Physiol Endocrinol Metab. 2007;292(4):E1062–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Troy S, Soty M, Ribeiro L, Laval L, Migrenne S, Fioramonti X, et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab. 2008;8(3):201–11.CrossRefGoogle Scholar
  43. 43.
    Peterli R, Wölnerhanssen B, Peters T, Devaux NÑ, Kern B, Christoffel-Court C, et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann Surg. 2009;250(2):234–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Hao Z, et al. Leptin deficient ob/ob mice and diet-induced obese miceresponded differently to Roux-en-Y bypass surgery. Int J Obes (Lond). 2015;39(5):798–805.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ochner CN, Kwok Y, Conceicao E, Pantazatos SP, Puma LM, Carnell S, et al. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg. 2011;253(3):502–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Forman EM, Hoffman KL, McGrath KB, Herbert JD, Brandsma LL, Lowe MR. A comparison of acceptance- and control-based strategies for coping with food cravings: an analog study. Behav Res Ther. 2007;45(10):2372–86.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lowe MR, van Steenburgh J, Ochner CN. Individual differences in brain activation in relation to ingestive behavior and obesity. Physiol Behav. 2009;5:561–71.CrossRefGoogle Scholar
  48. 48.
    Lowe MR, Butryn ML, Didie ER, Annunziato RA, Thomas JG, Crerand CE, et al. The power of food scale. A new measure of the psychological influence of the food environment. Appetite. 2009;53(1):114–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil. 2008;20(Suppl 1):64–72.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zagorodnyuk VP, Chen BN, Brookes SJH. Intraganglioinic laminar endings are mechano-transduction sites of vagal tension receptors in the Guinea-pig stomach. J Physiol. 2001;534:255–68.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Berthoud HR. The vagus nerve, food intake and obesity. Regul Pept. 2008;149(13):15–25.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Le Roux CW, Neary NM, Halsey TJ, Small CJ, Martinez-Isla AM, Ghatei MA, Theodorou NA, Bloom SR. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab. 2005;90(8):4521–4.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Berthoud HR, Kressel M, Raybould HE, Neuhuber WL. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat Embryol (Berl). 1995;191(3):203–12.CrossRefGoogle Scholar
  54. 54.
    Curry TB, Somaraju M, Hines CN, Groenewalk CB, Miles JM, Joyner MJ, Charkoudian N. Sympathetic support of energy expenditure and sympathetic nervous system activity after gastric bypass surgery. Obesity (Silver Spring). 2013;21(3):480–5.CrossRefGoogle Scholar
  55. 55.
    Zechner JF, Mirshahi UL, Satapati S, et al. Weight-independent effects of roux-en-Y gastric bypass on glucose homeostasis via melanocortin-4 receptors in mice and humans. Gastroenterology. 2013;144:580–90. e58.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Miras AD, Le Roux CW. Mechanisms underlying weight loss after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2013;10(10):575–84.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    De La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010;299:G440–8.CrossRefGoogle Scholar
  58. 58.
    Clarke SF, Murphy EF, Nilaweera K, Ross PR, Shanahan F, O Toole PW, et al. The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes. 2012;3(3):186–202.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS One. 2009;4(9):e7125.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.CrossRefGoogle Scholar
  62. 62.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–131.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sweeney TE, Morton JM. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surg. 2013;148(6):563–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci. 2009;106(7):2365–70.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Liou AP, Paziuk M, Luevano JM, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049–57.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329(1):386–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Kreymann B, Ghatei MA, Williams G, Bloom SR. Glucagon-like peptide-1. A physiological incretin in man. Lancet. 1987;330(8571):1300–4.CrossRefGoogle Scholar
  71. 71.
    Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 2003;17(13):1581–91.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kumar R, Lieske JC, Collazo-Clavell ML, Sarr MG, Olson ER, Vrtiska TJ, et al. Fat malabsorption and increased intestinal oxalate absorption are common after Roux-en-Y gastric bypass surgery. Surgery. 2011;149(5):654–61.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Odstrcil EA, Martinez JG, Santa Ana CA, Xue B, Schneider RE, Steffer KJ, et al. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. Am J Clin Nutr. 2010;92(4):704–13.PubMedCrossRefGoogle Scholar
  74. 74.
    Carswell KA, Vincent RP, Belgaumkar AP, Sherwood RA, Amiel SA, Patel AG, et al. The effect of bariatric surgery on intestinal absorption and transit time. Obes Surg. 2014;24(5):796–805.CrossRefGoogle Scholar
  75. 75.
    Lowe MR, Butryn ML. Hedonic hunger: a new dimension of appetite? Physiol Behav. 2007;91(4):432–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Ernst B, Thurnheer M, Wilms B, Schultes B. Differential changes in dietary habits after gastric bypass versus gastric banding operations. Obes Surg. 2009;19(3):274–80.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Olbers T, Bjorkman S, Lindroos A, Maleckas A, Lonn L, Sjostrom L, et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244(5):715–22.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Bueter M, Miras AD, Chichger H, Fenske W, Ghatei MA, Bloom SR, et al. Alterations of sucrose preference after Roux-en-Y gastric bypass. Physiol Behav. 2011;104(5):709–21.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Deitel M. The change in the dumping syndrome concept. Obes Surg. 2008;18(12):1622–4.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Thomas JR, Gizis F, Marcus E. Food selections of Roux-en-Y gastric bypass patients up to 2.5 years postsurgery. J Am Diet Assoc. 2010;110(4):608–12.PubMedCrossRefGoogle Scholar
  81. 81.
    Spector AC, Glendinning JI. Linking peripheral taste processes to behavior. Curr Opin Neurobiol. 2009;19(4):370–7.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML, Daud NM, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63(6):891–902.PubMedCrossRefGoogle Scholar
  83. 83.
    Laurenius A, Larsson I, Melanson KJ, Lindroos AK, Lonroth H, Bosaeus I, et al. Decreased energy density and changes in food selection following Roux-en-Y gastric bypass. Eur J Clin Nutr. 2013;67(2):168–73.PubMedCrossRefGoogle Scholar
  84. 84.
    Kenler HA, Brolin RE, Cody RP. Changes in eating behavior after horizontal gastroplasty and Roux-en-Y gastric bypass. Am J Clin Nutr. 1990;52(1):87–92.PubMedCrossRefGoogle Scholar
  85. 85.
    Nestoridi E, Kvas S, Kucharczyk J, Stylopoulos N. Resting energy expenditure and energetic cost of feeding are augmented after Roux-en-Y gastric bypass in obese mice. Endocrinology. 2012;153(5):2234–44.PubMedCrossRefGoogle Scholar
  86. 86.
    Faria S, Kelly E, Faria O. Energy expenditure and weight regain in patients submitted to Roux-en-Y gastric bypass. Obes Surg. 2009;19(7):856–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386:964.CrossRefGoogle Scholar
  88. 88.
    Pournaras DJ, Osborne A, Hawkins SC, Vincent RP, Mahon D, Ewings P, et al. Remission of type 2 diabetes after gastric bypass and banding: mechanisms and 2 year outcomes. Ann Surg. 2010;252(6):966–71.CrossRefGoogle Scholar
  89. 89.
    Pournaras DJ, Le Roux CW. The effect of bariatric surgery on gut hormones that alter appetite. Diabetes Metab. 2009;35(6 Pt 2):508–12.PubMedCrossRefGoogle Scholar
  90. 90.
    Svane MS, Bojsen-Møller KN, Madsbad S, Holst JJ. Updates in weight loss surgery and gastrointestinal peptides. Curr Opin Endocrinol Diabetes Obes. 2015;22(1):21–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Tang-Christensen M, Vrang N, Larsen PJ. Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int J Obes Relat Metab Disord. 2001;25(Suppl 5):S42–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Rubino F. Bariatric surgery: effects on glucose homeostasis. Curr Opin Clin Nutr Metab Care. 2006;9(4):497–507.PubMedCrossRefGoogle Scholar
  93. 93.
    Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, Castagneto M, Marescaux J. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Pournaras DJ, Nygren J, Hagström-Toft E, Arner P, le Roux CW, Thorell A. Improved glucose metabolism after gastric bypass: evolution of the paradigm. Surg Obes Relat Dis. 2016;12:1457–65. pii: S1550-7289(16)00110-6.PubMedCrossRefGoogle Scholar
  95. 95.
    Rasmussen BA, et al. Jejunal leptin-P13K signaling lowers glucose production. Cell Metab. 2014;19(1):155–61.PubMedCrossRefGoogle Scholar
  96. 96.
    Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE, Satapati S, Suino-Powell K, Xu HE, Gerard RD, Finck BN, Burgess SC, Mangelsdorf DJ, Kliewer SA. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab. 2011;13:729–38.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Nora M, Guimarães M, Almeida R, Martins P, Gonçalves G, MJÑ F, et al. Metabolic laparoscopic gastric bypass for obese patients with type 2 diabetes. Obes Surg. 2011;21(11):1643–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Nguyen NT, Varela E, Sabio A, et al. Resolution of hyperlipidemia after laparoscopic Roux-en-Y gastric bypass. J Am Coll Surg. 2006;203:24.PubMedCrossRefGoogle Scholar
  99. 99.
    Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.CrossRefGoogle Scholar
  100. 100.
    Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113:1408–141.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hirokane H, Nakahara M, Tachibana S, Shimizu M, Sato R. Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem. 2004;279:45685–92.PubMedCrossRefGoogle Scholar
  102. 102.
    Raffaelli M, et al. Effect of gastric bypass versus diet on cardiovascular risk factors. Ann Surg. 2014;259:694–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Franco J, Ruiz P, Palermo M, Gagner M. A review of studies comparing three laparoscopic procedures in bariatric surgery: sleeve gastrectomy, Roux-en-Y gastric bypass and adjustable gastric banding. Obes Surg. 2011;21(9):1458–68.PubMedCrossRefGoogle Scholar
  104. 104.
    Rhode BM, Arseneau P, Cooper BA, Katz M, Gilfix BM, MacLean LD. Vitamin B-12 deficiency after gastric surgery for obesity. Am J Clin Nutr. 1996;63(1):103–9.PubMedCrossRefGoogle Scholar
  105. 105.
    LJ Bradley MS RD. Are vitamin B12 and folate deficiency clinically important after roux-en-Y gastric bypass? J Gastrointest Surg. 1998;2(5):436–42.CrossRefGoogle Scholar
  106. 106.
    Decker GA, Swain JM, Crowell MD, Scolapio JS. Gastrointestinal and nutritional complications after bariatric surgery. Am J Gastroenterol. 2007;102(11):2571–80.PubMedCrossRefGoogle Scholar
  107. 107.
    Halverson JD. Micronutrient deficiencies after gastric bypass for morbid obesity. Am Surg. 1986 Nov;52(11):594–8.PubMedGoogle Scholar
  108. 108.
    Smith CD, Herkes SB, Behrns KE, et al. Gastric acid secretion and vitamin B12 absorption after vertical Roux-gastric-Y bypass for morbid obesity. Ann Surg. 1993;218:91–6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Brolin RE, LaMarca LB, Kenler HA, Cody RP. Malabsorptive gastric bypass in patients with superobesity. J Gastrointest Surg. 2002;6(2):195–205.PubMedCrossRefGoogle Scholar
  110. 110.
    Coates PS, Fernstrom JD, Fernstrom MH, Schauer PR, Greenspan SL. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab. 2004;89(3):1061–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Von Mach MA, Stoeckli R, Bilz S, Kraenzlin M, Langer I, Keller U. Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism. 2004;53(7):918–21.CrossRefGoogle Scholar
  112. 112.
    Comeau E, Gagner M, Inabnet WB, Herron DM, Quinn TM, Pomp A. Symptomatic internal hernias after laparoscopic bariatric surgery. Surg Endosc. 2005;19(1):34–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Garza E Jr, Kuhn J, Arnold D, Nicholson W, Reddy S, McCarty T. Internal hernias after laparoscopic Roux-en-Y gastric bypass. Am J Surg. 2004;188(6):796–800.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Cho M, Carrodeguas L, Pinto D, Lascano C, Soto F, Whipple O, et al. Diagnosis and management of partial small bowel obstruction after laparoscopic antecolic antegastric Roux-en-Y gastric bypass for morbid obesity. J Am Coll Surg. 2006;202(2):262–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Filip JE, Mattar SG, Bowers SP, Smith CD. Internal hernia formation after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Am Surg. 2002;68(7):640–3.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Husain S, Ahmed AR, Johnson J, Boss T, O’Malley W. Small-bowel obstruction after laparoscopic Roux-en-Y gastric bypass: etiology, diagnosis, and management. Arch Surg. 2007;142(10):988.PubMedCrossRefGoogle Scholar
  117. 117.
    Reddy SA, Yang C, McGinnis LA, Seggerman RE, Garza E, Ford KL III. Diagnosis of transmesocolic internal hernia as a complication of retrocolic gastric bypass: CT imaging criteria. Am J Roentgenol. 2007;189(1):52–5.CrossRefGoogle Scholar
  118. 118.
    Potoczna N, Harfmann S, Steffen R, et al. Bowel habits after bariatric surgery. Obes Surg. 2008;18:1287.PubMedCrossRefGoogle Scholar
  119. 119.
    Mathews DH, Lawrence W, Poppell JW, Vanamee P, Randall HT. Change in effective circulating volume during experimental dumping syndrome. Surgery. 1960;48:185–94.PubMedGoogle Scholar
  120. 120.
    Tack J, Arts J, Caenepeel P, De Wulf D, Bisschops R. Pathophysiology, diagnosis and management of postoperative dumping syndrome. Nat Rev Gastroenterol Hepatol. 2009;6(10):583–90.CrossRefGoogle Scholar
  121. 121.
    Ukleja A. Dumping syndrome: pathophysiology and treatment. Nutr Clin Pract. 2005;20(5):517–25.CrossRefGoogle Scholar
  122. 122.
    Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–30.CrossRefGoogle Scholar
  123. 123.
    Cummings DE, Foster-Schubert KE, Overduin J. Ghrelin and energy balance: focus on current controversies. Curr Drug Targets. 2005;6(2):153–69.CrossRefGoogle Scholar
  124. 124.
    Kapoor RR, James C, Hussain K. Advances in the diagnosis and management of hyperinsulinemic hypoglycemia. Nat Clin Pract Endocrinol Metab. 2009;5(2):101–12.PubMedCrossRefGoogle Scholar
  125. 125.
    Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med. 2005;353(3):249–54.CrossRefGoogle Scholar
  126. 126.
    Patti ME, Goldfine AB. Hypoglycemia after gastric bypass: the dark side of GLP-1. Gastroenterology. 2014;146(3):605–8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Yu EW, Bouxsein ML, Putman MS, Monis EL, Roy AE, Pratt JS, Butsch WS, Finkelstein JS. Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab. 2015;100(4):1452–9.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Reid IR. Relationships among body mass, its components, and bone. Bone. 2002;31(5):547–55.PubMedCrossRefGoogle Scholar
  129. 129.
    Nelson WK, Houghton SG, Milliner DS, et al. Enteric hyperoxaluria, nephrolithiasis, and oxalate nephropathy: potentially serious and unappreciated complications of Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2005;1:481–5.PubMedCrossRefGoogle Scholar
  130. 130.
    Canales BK, Gonzalez RD. Kidney stone risk following Roux-en-Y gastric bypass surgery. Transl Androl Urol. 2014;3(3):242–9.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Shiffman ML, Sugerman HJ, Kellum JM, Moore EW. Changes in gallbladder bile composition following gallstone formation and weight reduction. Gastroenterology. 1992;103:214.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Shiffman ML, Sugerman HJ, Kellum JM, et al. Gallstone formation after rapid weight loss: a prospective study in patients undergoing gastric bypass surgery for treatment of morbid obesity. Am J Gastroenterol. 1991;86:1000.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Sugerman HJ, Brewer WH, Shiffman ML, et al. A multicenter, placebo-controlled, randomized, double-blind, prospective trial of prophylactic ursodiol for the prevention of gallstone formation following gastric-bypass-induced rapid weight loss. Am J Surg. 1995;169:91.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Hamad GG, Ikramuddin S, Gourash WF, Schauer PR. Elective cholecystectomy during laparoscopic Roux-en-Y gastric bypass: is it worth the wait? Obes Surg. 2003;13:76.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Kumaravel A, Zelisko A, Schauer P, Lopez R, Kroh M, Stevens T. Acute pancreatitis in patients after bariatric surgery: incidence, outcomes, and risk factors. Obes Surg. 2014 Dec;24(12):2025–30.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Go MR, Muscarella P 2nd, Needleman BJ, et al. Endoscopic management of stomal stenosis after Roux-en-Y gastric bypass. Surg Endosc. 2004;18:56.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Rasmussen JJ, Fuller W, Ali MR. Marginal ulceration after laparoscopic gastric bypass: an analysis of predisposing factors in 260 patients. Surg Endosc. 2007;21:1090.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Gumbs AA, Duffy AJ, Bell RL. Incidence and management of marginal ulceration after laparoscopic Roux-Y gastric bypass. Surg Obes Relat Dis. 2006;2:460.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Diabetes Complications Research Centre, Conway Institute, School of MedicineUniversity College DublinDublinIreland
  2. 2.Diabetes Complications Research CentreUniversity College DublinDublinIreland

Personalised recommendations