Advertisement

Fluids and Vasoactive Agents

  • James DarginEmail author
Chapter
  • 60 Downloads

Abstract

Fluid resuscitation and the use of vasoactive agents are the primary means of improving tissue perfusion in patients with circulatory shock. Intravenous fluid boluses not only help to restore hemodynamic stability in hypovolemic shock, but in many other shock states as well. Vasoactive agents are often necessary to help improve blood flow to vital organs, particularly in patients with shock refractory to fluid resuscitation. The type and quantity of fluid administered and the appropriate selection of vasoactive agents can affect patient outcomes. A clear understanding of the pharmacologic principles, the indications and contraindications, and the toxicities of fluids and vasoactives will help guide effective resuscitation of the patient with shock.

Keywords

Shock Fluid Crystalloid Colloid Vasopressor Epinephrine Norepinephrine Phenylephrine Vasopressin Dopamine Dobutamine Milrinone 

References

  1. 1.
    Katz AM. Ernest Henry Starling, his predecessors, and the “law of the heart”. Circulation. 2002;106(23):2986–92.PubMedGoogle Scholar
  2. 2.
    Lee SJ, Ramar K, Park JG, Gajic O, Li G, Kashyap R. Increased fluid administration in the first three hours of sepsis resuscitation is associated with reduced mortality: a retrospective cohort study. Chest. 2014;146(4):908–15.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Michard F, Teboul JL. Predicting fluid responsiveness in the ICU patients: a critical analysis of the evidence. Chest. 2002;121(6):2000–8.PubMedGoogle Scholar
  5. 5.
    Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the Soap study. Crit Care Med. 2006;34(2):344–53.PubMedGoogle Scholar
  6. 6.
    Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013 Jul;41(7):1774–81.PubMedGoogle Scholar
  8. 8.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;21(1):1.Google Scholar
  10. 10.
    Monnet X, Rienzo M, Osman D, Anquel N, Richard C, Pinsky MR, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402–7.PubMedGoogle Scholar
  11. 11.
    Lexicomp® Online. [Internet]. c1978–2014. Hetastarch (Lexi-Drugs). [Updated Nov 12, 2014; cited Nov 15, 2014]. Available from: https://online.lexi.com/.
  12. 12.
    Lexicomp Online. [Internet]. c1978–2014. Albumin (Lexi-Drugs). [Updated Sept 19, 2014; cited Nov 15, 2014]. Available from: https://online.lexi.com/.
  13. 13.
    Moore FD, Dagher FJ, Boyden CM, Lee CJ, Lyons JH. Hemorrhage in normal man. I. Distribution and dispersal of saline infusions following acute blood loss: clinical kinetics of blood volume support. Ann Surg. 1966;163:485–504.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Falk JL, Rackow EC, Weil MH. Colloid and crystalloid fluid resuscitation. Acute Care. 1983–84;10(2):59–94.Google Scholar
  15. 15.
    Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310(17):1809–17.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Churton E. Leed general infirmary: a case of scirrhus of the pylorus, with excessive vomiting; repeated intravenous injections of saline solution; remarks. Lancet. 1888;132:620–1.Google Scholar
  17. 17.
    Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3):726–35.PubMedPubMedCentralGoogle Scholar
  18. 18.
    McCluskey SA, Karkouti K, Wijeysundera D. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg. 2013;117(2):412–21.PubMedGoogle Scholar
  19. 19.
    Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566–72.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS, et al. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis. Crit Care Med. 2014;42(7):1585–91.PubMedGoogle Scholar
  21. 21.
    McDermid RC, Raghunathan K, Romanovsky A, Shaw AD, Bagshaw SM. Controversies in fluid therapy: type, dose and toxicity. World J Crit Care Med. 2014;3(1):24–33.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Myburgh J, Cooper DJ, Finfer S, Bellomo R, Norton R, Bishop N, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84.Google Scholar
  24. 24.
    Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis. Crit Care Med. 2011;39:386–91.PubMedGoogle Scholar
  25. 25.
    Finfer S, McEvoy S, Bellomo R, McArthur C, Myburgh J, Norton R, et al. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37(1):86–96.PubMedGoogle Scholar
  26. 26.
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637.PubMedGoogle Scholar
  27. 27.
    Myburgh JA, Finfer S, Bellomo R, Billot CA, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.PubMedGoogle Scholar
  28. 28.
    Treib J, Haass A, Pindur G. Coagulation disorders caused by hydroxyethyl starch. Thromb Haemost. 1997;78(3):974–83.PubMedGoogle Scholar
  29. 29.
    Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.PubMedGoogle Scholar
  30. 30.
    Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.PubMedGoogle Scholar
  31. 31.
    FDA Safety Communication: Boxed Warning on increased mortality and severe renal injury, and additional warning on risk of bleeding, for use of hydroxyethyl starch solutions in some settings. [Internet]. [Revised Nov 15, 2013; cited Nov 15, 2014]. Available from: http://www.fda.gov/biologicsbloodvaccines/safetyavailability/ucm358271.htm.
  32. 32.
    Ducrocq N, Kimmoun A, Furmaniuk A, Hekalo Z, Maskali F, Poussier S, et al. Comparison of equipressor doses of norepinephrine, epinephrine, and phenylephrine on septic myocardial dysfunction. Anesthesiology. 2012;116(5):1083–91.PubMedGoogle Scholar
  33. 33.
    DeBacker D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.Google Scholar
  34. 34.
    Bellomo R, Kellum JA, Wisniewski SR, Pinsky MR. Effects of norepinephrine on the renal vasculature in normal and endotoxemic dogs. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1186–92.PubMedGoogle Scholar
  35. 35.
    Kellum JA, Decker JM. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29(8):1526–31.PubMedGoogle Scholar
  36. 36.
    Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchinic oxygen utilization in hyperdynamic sepsis. JAMA. 1994;272(17):1354–7.PubMedGoogle Scholar
  37. 37.
    Levy B. Bench-to-bedside review: is there a place for epinephrine in septic shock? Crit Care. 2005;9(6):561–5.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle N+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005;365(9462):871–5.PubMedGoogle Scholar
  39. 39.
    Tisdale JE, Patel R, Web CR, Borzak S, Zarowitz BJ. Electrophysiologic and proarrhythmic effects of intravenous inotropic agents. Prog Cardiovasc Dis. 1995;38(2):167–80.PubMedGoogle Scholar
  40. 40.
    Price LC, Wort SJ, Finney SJ, Marino PS, Brett SJ. Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emergency options for management: a systematic literature review. Crit Care. 2010;14(5):R169.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Barrett LK, Orie NN, Taylor V, Stidwell RP, Clapp LH, Singer M. Differential effects of vasopressin and norepinephrine on vascular reactivity in a long-term rodent model of sepsis. Crit Care Med. 2007;35(10):2337–43.PubMedGoogle Scholar
  42. 42.
    DeBacker D, Aldecoa C, Njimi H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit Care Med. 2012;40(3):725–30.Google Scholar
  43. 43.
    Morelli A, Ertmer C, Rehber S, Lange M, Orecchioni A, Laderchi A, et al. Phenylephrine versus norepinephrine for initial hemodynamic support of patients with septic shock: a randomized, controlled trial. Crit Care. 2008;12(6):R143.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Court O, Kumar A, Parrillo JE, Kumar A. Myocardial depression in sepsis and septic shock. Crit Care. 2002;6(6):500–8.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Annane D, Vignon P, Renault A, Bollaert PE, Charpentier C, Martin C, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock : a randomised trial. Lancet. 2007;370:676–84.PubMedGoogle Scholar
  46. 46.
    Meier-Hellmann A, Reinhart K, Bredle DL, Specht M, Spies CD, Hanneman L. Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med. 1997;25(3):399–404.PubMedGoogle Scholar
  47. 47.
    Duranteau J, Sitbon P, Teboul JL, Vicaut E, Anguel N, Richard C, et al. Effects of epinephrine, norepinephrine, or the combination of norepinephrine and dobutamine on gastric mucosa in septic shock. Crit Care Med. 1999;27(5):893–900.PubMedGoogle Scholar
  48. 48.
    Russell JA. Bench to bedside review: vasopressin in the management of septic shock. Crit Care. 2011;15(4):226.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, et al. Vasopressin versus norepineprhine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.PubMedGoogle Scholar
  50. 50.
    Lauzier F, Levy B, Lamarre P, Lesur O. Vasopressin or norepinephrine in early hyperdynamic septic shock: a randomized clinical trial. Intensive Care Med. 2006;32(11):1782–9.PubMedGoogle Scholar
  51. 51.
    Levy B, Perez P, Perny J, Thivilier C, Gerard A. Comparison of norepineprhine-dobutamine to epineprhine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock: a prospective, randomized pilot study. Crit Care Med. 2011;39(3):450–5.PubMedGoogle Scholar
  52. 52.
    Blood pressure management after acute spinal cord injury. Neurosurgery. 2002;50(3):S58–62.Google Scholar
  53. 53.
    Vale FL, Burns J, Jackson AB, Hadley MN. Combined medical and surgical treatment after acute spinal cord injury: results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J Neurosurg. 1997;87(2):239–46.PubMedGoogle Scholar
  54. 54.
    Simons FE, Gu X, Simons KJ. Epineprhine absorption in adults: intramuscular versus subcutaneous injection. J Allergy Clin Immunol. 2001;108(5):871–3.PubMedGoogle Scholar
  55. 55.
    Heffner AC, Swords D, Kline JA, Jone AE. The frequency and significance of postintubation hypotension during emergency airway management. J Crit Care. 2012;27(4):417.PubMedGoogle Scholar
  56. 56.
    Doherty A, Ohashi Y, Downey K, Carvalho JC. Phenylephrine infusion versus bolus regimens during cesarean delivery under spinal anesthesia: a double-blind randomized clinical trial to assess hemodynamic changes. Anesth Analg. 2012;115(6):1343–50.PubMedGoogle Scholar
  57. 57.
    Pinsky MR, Payen D. Functional hemodynamic monitoring. Crit Care. 2005;9(6):566–72.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Lehman LW, Saeed M, Talmor D, Mark R, Malhotra A. Methods of blood pressure measurement in the ICU. Crit Care Med. 2013;41(1):34–40.PubMedPubMedCentralGoogle Scholar
  59. 59.
    LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28(8):2729–32.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Tufts University School of MedicineMedical Intensive Care UnitBostonUSA
  2. 2.Pulmonary and Critical Care MedicineLahey Hospital & Medical CenterBurlingtonUSA

Personalised recommendations