Advertisement

Physiology

  • Nina HautekeeteEmail author
  • Henk van Dijk
  • Pascal Touzet
  • Enrico Biancardi
Chapter

Abstract

Sea beet is an ideal plant species for evolutionary ecology studies. The range of variation is very large among its populations for life cycle and several life-history traits, such as the proportion of dormant seeds, mean life span, age at maturity, flowering time, day length requirement and vernalization requirement for flowering. These traits follow latitudinal patterns in France, of which many correlate with ecological factors. The range of variation of these traits, their geographical patterns, heritability and the ecology have been studied. A large potential for a genetic change in day length sensitivity has been observed experimentally, and a substantial genetic change in the flowering date within two decades has been reported, probably in line with the recent climate change. Sea beet also displays a geographical variation for some reproductive traits, that is, self-incompatibility and male-sterility. Sea beet exhibits two specific characteristics in its mating system when compared with the other species of the section: it is self-incompatible and gynodioecious. Gynodioecy is under cytonuclear control, sterilizing factors being encoded by the mitochondrial genome. Recent advances on the molecular characterization of the different male-sterilizing mitochondrial genomes found in beet are reported.

Keywords

Beta maritima Cytoplasmic male sterility Gynodioecy Iteroparity Semelparity Life span Life-history traits Ecology Delayed maturity Vernalization requirement Climate changes Weed beets 

References

  1. Abegg FA (1936) A genetic factor for the annual habit in beets and linkage relationship. J Agr Res 53:493–511Google Scholar
  2. Andersen NS, Siegismund HR, Jørgensen B (2005) Low level of gene flow from cultivated beets (Beta vulgaris L. ssp. vulgaris) into Danish populations of sea beet (Beta vulgaris L. ssp. maritima (L.) Arcangeli). Mol Ecol 14:1391–1405PubMedCrossRefPubMedCentralGoogle Scholar
  3. Angevine MW, Chabot BF (1979) Seed germinaion syndromes in higher plants. In: Solbrig OT, Jain S, Johnson GB, Raven PH (eds) Topics in plant population biology. Columbia University Press, New York, U.SGoogle Scholar
  4. Arnaud JF, Fénart S, Godé C, Deledicque S, Touzet P, Cuguen J (2009) Fine-scale geographical structure of genetic diversity in inland wild beet populations. Mol Ecol 18:3201–3215PubMedPubMedCentralGoogle Scholar
  5. Arnaud JF, Viard F, Delescluse M, Cuguen J (2003) Evidence for gene flow via seed dispersal from crop to wild relatives in Beta vulgaris (Chenopodiaceae): consequences for the release of genetically modified crop species with weedy lineages. Proc R Soc B Biol Sci 270:1565–1571Google Scholar
  6. Artschwager E (1927) Development of flowers and seed in the sugar beet. J Agr Res 34:1–25Google Scholar
  7. Artschwager E, Starrett R (1933) The time factor in fertilization and embryo development in the sugar beet. J Agr Res 47:823–843Google Scholar
  8. Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bartsch D, Clegg J, Ellstrand N (1999) Origin of wild beets and gene flow between Beta vulgaris and B. macrocarpa in California. Proc Br Crop Prot Counc Symp 72:269–274Google Scholar
  10. Bartsch D, Cuguen J, Biancardi E, Sweet J (2003) Environmental implications of gene flow from sugar beet to wild beet–current status and future research needs. Environ Biosaf Res 2:105–115CrossRefGoogle Scholar
  11. Bewley JD, Black M (1994) Seeds: physiology of development and germination Plenum PressGoogle Scholar
  12. Biancardi E (2005) Objectives of sugar beet breeding—morphological and physiological iraits. In: Biancardi E, Campbell LG, Skaracis GN, de Biaggi M (eds) Genetics and breeding of sugar beet. Science Publishers Inc, Enfield, NH, USA, pp 72–73CrossRefGoogle Scholar
  13. Bliss FA, Gabelman WH (1965) Inheritance of male sterility in beets, Beta vulgaris L. Crop Sci 5:403–406CrossRefGoogle Scholar
  14. Bosemark NO (1971) Use of Mendelian male sterility in recurrent selection and hybrid breeding in beets. In: Report of meeting of the Eucarpia fodder crops section at Lusignan, France, pp 127–136Google Scholar
  15. Bosemark NO (1993) Genetics and breeding. In: Cooke DA, Scott RK (eds) The sugar beet crop: science into practice. Chapman & Hall, London, pp 66–119Google Scholar
  16. Bosemark NO (1998) Genetic diversity for male sterility in wild and cultivated beets. In: Frese L, Panella L, Srivastava HM, Lange W (eds) International beta genetic resources network. A report on the 4th International. Beta genetic resources workshop and world beta network conference held at the Aegean Agricultural Research Institute, Izmir, Turkey, 28 Feb–3 Mar 1996. International Plant Genetic Resources Institute, Rome, pp 44–56Google Scholar
  17. Boudry P, Mccombie H, van Dijk H (2002) Vernalization requirement of wild beet Beta vulgaris subsp. maritima: Among population variation and its adaptive significance. J Ecol 90:693–703CrossRefGoogle Scholar
  18. Boudry P, Mörchen M, Saumitou-Laprade P, Vernet P, van Dijk H (1993) The origin and evolution of weed beets: consequences for the breeding and release of herbicide-resistant transgenic sugar beets. Theor Appl Genet 87:471–478PubMedCrossRefGoogle Scholar
  19. Boudry P, Wieber R, Saumitou-Laprade P, Pillen K (1994) Identification of RFLP markers closely linked to the bolting gene B and their significance for the study of the annual habit in beets (Beta vulgaris L.). Theor Appl Genet 88:852–858PubMedCrossRefPubMedCentralGoogle Scholar
  20. Boutin V, Jean R, Valero M, Vernet P (1988) Gynodioecy in Beta maritima. Oecol Plant 9:61–66Google Scholar
  21. Boutin V, Pannenbecker G, Ecke W, Schewe G, Saumitou-Laprade P, Jean R, Vernet P, Michaelis G (1987) Cytoplasmic male sterility and nuclear restorer genes in a natural population of Beta maritima: genetical and molecular aspects. Theor Appl Genet 73:625–629PubMedCrossRefPubMedCentralGoogle Scholar
  22. Boutin-Stadler V (1987) Sélection sexuelle et dynamique de la stérilité male dans les populations naturelle de Beta maritima. Université des Sciences et Technologies de LillelGoogle Scholar
  23. Boutin-Stadler V, Saumitou-Laprade P, Valero M, Jean R, Vernet P (1989) Spatio-temporal variation of male sterile frequencies in two natural populations of Beta maritima. Heredity 63:395–400CrossRefGoogle Scholar
  24. Bruun L, Haldrup A, Petersen SG, Frese L, de Bock TSM, Lange W (1995) Self-incompatibility reactions in wild species of the genus Beta and their relation to taxonomical classification and geographical origin. Genet Resour Crop Evol 42:293–301CrossRefGoogle Scholar
  25. Campbell LG, Entz GW (1991) Temperature effects on sugar beet seedling emergence. J Sugar Beet Res 28:129–140CrossRefGoogle Scholar
  26. Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997CrossRefGoogle Scholar
  27. Coç H (2005) Investigation of male sterility in sugar beet populations. Akadeniz Universitesi Ziraat Fakultesi Dergisi 18:195–300Google Scholar
  28. Coe GE, Stewart D (1977) Cytoplasmic male sterility, self fertility, and monogermness in Beta maritima L. J ASSBT 19:257–261Google Scholar
  29. Coons GH (1975) Interspecific hybrids between Beta vulgaris L. and the wild species of Beta. J ASSBT 18:281–306Google Scholar
  30. Crane E, Walker P (1984) Beta Vulgaris L. Pollination directory for world crop. IBRA, Hill House, UKGoogle Scholar
  31. Cuguen J, Wattier R, Saumitou-Laprade P, Forciolo D, Mörchen M, van Dijk H (1994) Gynodioecy and mitochondrial DNA polymorphism in natural populations of Beta vulgaris ssp maritima. Genet Sel Evol 26(Suppl 1):87s–101sCrossRefGoogle Scholar
  32. Dahlberg HW (1938) Some observations on the wild beet (Beta maritima). Proc Am Soc Sugar Beet Technol 1:76–79Google Scholar
  33. Dale MFB, Ford-Lloyd BV (1983) Reproductive characters associated with breeding behaviour in Beta sect. Beta (Chenopodiaceae). Plant Syst Evol 143:277–283CrossRefGoogle Scholar
  34. Dale MFB, Ford-Lloyd BV, Arnold MH (1985) Variation in some agronomically important characters in a germplasm collection of beet (Beta Vulgaris L.). Euphytica 34:449–455CrossRefGoogle Scholar
  35. Dalke L, Szota M (1993) Utilizing male sterility from Beta maritima in sugarbeet breeding. J Sugar Beet Res 30:253–260CrossRefGoogle Scholar
  36. Darracq A, Varré JS, Maréchal-Drouard L, Courseaux A, Castric V, Saumitou-Laprade P, Oztas S, Lenoble P, Vacherie B, Barbe V, Touzet P (2011) Structural and content diversity of mitochondrial genome in beet: a comparative genomic analysis. Genome Biol Evol 3:723–736Google Scholar
  37. Darwin C (1877) The different form of flowers on plants of the same species. Murray, London, UKCrossRefGoogle Scholar
  38. de Cauwer I, Dufaÿ M, Cuguen J, Arnaud J-F (2010) Effects of fine-scale genetic structure on male mating success in gynodioecious Beta vulgaris ssp. maritima. Mol Ecol 19:1540–1558CrossRefGoogle Scholar
  39. de Cauwer I, Arnaud J-F, Courseaux A, Dufaÿ M (2011) Sex-specific fitness variation in gynodioecious Beta vulgaris ssp. maritima: do empirical observations fit theoretical predictions? J Evol Biol 24:2456–2472PubMedCrossRefPubMedCentralGoogle Scholar
  40. de Vilmorin JL (1923) L’ hérédité de la betterave cultivée. Gauthier-Villars, Paris, FranceGoogle Scholar
  41. Delph LF, Bailey MF (2010) The nearness of you: the effect of population structure on siring success in a gynodioecious species. Mol Ecol 19:1520–1522PubMedCrossRefPubMedCentralGoogle Scholar
  42. Desplanque B, Viard F, Bernard J, Forcioli D, Saumitou-Laprade P, Cuguen J, van Dijk H (2000) The linkage disequilibrium between chloroplast DNA and mitochondrial DNA haplotypes in Beta vulgaris ssp. maritima (L.): the usefulness of both genomes for population genetic studies. Mol Ecol 9:141–154PubMedCrossRefPubMedCentralGoogle Scholar
  43. Dornier A, Dufay M (2013) How selfing, inbreeding depression, and pollen limitation impact nuclear-cytoplasmic gynodioecy: a model. Evolution 67:2674–2687PubMedCrossRefPubMedCentralGoogle Scholar
  44. Driessen S (2003) Beta vulgaris ssp. maritima an Deutschlands Ostseeküste. PhD, RWTH Aachen, GermanyGoogle Scholar
  45. Duchenne M, Lejeune B, Fouillard P, Quetler F (1989) Comparison of the organization and expression of mtDNA of fertile and male-sterile sugar beet varities (Beta vulgaris L.). Theor Appl Genet 78:633–640PubMedCrossRefPubMedCentralGoogle Scholar
  46. Ducos E, Touzet P, Boutry M (2001a) The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J 26:171–180PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ducos E, Touzet P, Saumitou-Laprade P, Vernet P, Cuguen J (2001b) Nuclear effect on mitochondrial protein expression of the CMS Owen cytoplasm in sugar beet. Theor Appl Genet 102:1299–1304CrossRefGoogle Scholar
  48. Dufaÿ M, Cuguen J, Arnauld JF, Touzet P, Shykoff J (2009) Sex ratio variation among gynodioecious populations of sea beet: can it be explained by negative frequency-dependent selection? Evolution 63:1483–1497PubMedCrossRefPubMedCentralGoogle Scholar
  49. Dufaÿ M, Touzet P, Maurice S, Cuguen J (2007) Modeling the maintenance of male-fertile cytoplasm in a gyodioecious population. Heredity 99:349–356PubMedCrossRefPubMedCentralGoogle Scholar
  50. Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New York, NY, USAGoogle Scholar
  51. Fénart S, Touzet P, Arnaud J-F, Cuguen J (2006) Emergence of gynodioecy in wild beet (Beta vulgaris ssp. maritima L.): a genealogical approach using chloroplastic nucleotide sequences. Proc R Soc B Biol Sci 273:1391–1398CrossRefGoogle Scholar
  52. Galmés J, Medrano H, Flexas J (2006) Germination capacity and temperature dependance in Mediterranean species of Balearic Islands. Invest Agrar: Sist Recur For 15:88–95Google Scholar
  53. Grogan D (2009) Survey of Beta vulgaris subsp. maritima populations in Ireland. In: Frese L, Maggioni L, Lipman E (eds) Report of a Working Group on Beta and the World Beta Network. Third Joint Meeting, 8–11 March 2006, Puerto de la Cruz, Tenerife, Spain. Bioversity International, Rome, Italy, pp 38–44Google Scholar
  54. Halldén C, Bryngelsson T, Bosemark NO (1988) Two new types of cytoplasmic male sterility found in wild Beta beets. Theor Appl Genet 75:561–568CrossRefGoogle Scholar
  55. Hautekèete NC, Piquot Y, van Dijk H (2001) Investment on survival and reproduction along a semelparity-iteroparity gradient in the Beta species complex. J Evol Biol 14:795–804CrossRefGoogle Scholar
  56. Hautekèete NC, Piquot Y, van Dijk H (2002a) Life span in Beta vulgaris ssp. maritima: the effects of age at first reproduction and disturbance. J Ecol 90:508–516CrossRefGoogle Scholar
  57. Hautekèete NC, Piquot Y, van Dijk H (2002b) Variation in ageing and meristemic activity in relation to flower-bud and fruit excision in the Beta species complex. New Physiol 179:575–579Google Scholar
  58. Hautekèete NC, van Dijk H, Piquot Y, Teriokhin A (2009) Evolutionary optimization of life-history traits in the sea beet Beta vulgaris subsp. maritima: comparing model to data. Acta Oecol 35:104–116CrossRefGoogle Scholar
  59. Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Hess B, Machackova I, Fischer U, Leubner-Metzger G (2007) 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot 58:3047–3060PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hiroshi S, Tomohiko K (2003) Genetical and molecular analyses of male sterility found in Beta maritima accession FR4-31. Proc Jpn Soc Sugar Beet Technol 44:21–25Google Scholar
  61. Höft N, Dally N, Hasler M, Jung C (2018) Haplotype variation of flowering time genes of sugar beet and its wild relatives and the impact on life cycle regimes. Front Plant Sci 2211Google Scholar
  62. Hojland JG, Pedersen L (1994) Sugar beet, beetroots, and fodder beet (Beta vulgaris L. ssp. vulgaris): dispersal, establishment and interactions with the enviornment. The National Forest and Nature Agency, Copenhagen, DenmarkGoogle Scholar
  63. Hooker WJ (1835) The british flora. London, UKGoogle Scholar
  64. Jaggard KW, Qi A, Ober ES (2010) Possible change to arable crop yields by 2050. Phil Trans R Soc B 365:2835–2851PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jones PD, Lister DH, Jaggard KW, Pidgeon JD (2003) Future climate impact on the productivity of sugar beet (Beta vulgaris L.) in Europe. Clim Change 58:93–108CrossRefGoogle Scholar
  66. Kinoshita T (1965) Male sterility in Beta maritima L. Tensai Kenkyu Hokoku/Bull Sugar Beet Res Suppl. 5:60–63Google Scholar
  67. Kitazaki K, Arakawa T, Matsunaga M1, Yui-Kurino R, Matsuhira H1, Mikami T, Kubo T (2015) Post-translational mechanisms are associated with fertility restoration of cytoplasmic male sterility in sugar beet (Beta vulgaris). Plant J. 83(2):290–299Google Scholar
  68. Klotz KL (2005) Anatomy and physiology. In: Biancardi E, Campbell LG, Skaracis GN, de Biaggi M (eds) Genetics and breeding of sugar beet. Science Publishers Inc, Enfield, NH, USA, pp 9–19Google Scholar
  69. Kroes HW (1973) An enzyme theory of self-incompatibility. Incomp Newsl Assoc 5–14Google Scholar
  70. Lange W, Oleo M, de Bock TSM, D’Haeseleer M, Jacobs M (1993) Chromosomal assignment of three enzyme coding loci (Icd1, Nad-Mdh1 and Aco1) using primary trisomics in beet (Beta vulgaris L.). Plant Breed 111:177–184CrossRefGoogle Scholar
  71. Larsen K (1977) Self-incompatibility in Beta vulgaris L. I. Four gametophytic, complementary S-loci in sugar beet. Hereditas 85:227–248CrossRefGoogle Scholar
  72. Letschert JPW (1993) Beta section Beta: biogeographical patterns of variation, and taxonomy. PhD Wageningen Agricultural University Papers 93-1Google Scholar
  73. Lewellen RT (1989) Registration of cytoplasmic male sterile sugarbeet germplasm C600CMS. Crop Sci 29:246CrossRefGoogle Scholar
  74. Low EG (2007) Shingle biodiversity and habitat disturbance. University of Sussex, Brighton, UKGoogle Scholar
  75. Mann V, McIntosh L, Theuer C, Hirschberg J (1989) A new cytoplasmic male sterile type in the sugar beet Beta vulgaris L.: a molecular analysis. Theor Appl Genet 78:293–297PubMedCrossRefPubMedCentralGoogle Scholar
  76. Matsuhira H, Kagami H, Kurata M, Kitazaki K, Matsunaga M, Hamaguchi Y, Hagihara E, Ueda M, Harada M, Muramatsu A, Yui-Kurino R, Taguchi K, Tamagake H, Mikami T, Kubo T (2012) Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.). Genetics 192(4):1347–1358Google Scholar
  77. McFarlane JS (1975) Naturally occurring hybrids between sugarbeet and Beta macrocarpa in the Imperial Valley of California. J ASSBT 18:245–251Google Scholar
  78. Meyer EH, Lehmann C, Boivin S, Brings L, de Cauwer I, Bock R, Kühn K, Touzet P (2018) CMS-G from Beta vulgaris ssp. maritima is maintained in natural populations despite containing an atypical cytochrome c oxidase. Biochem J 475:759–773Google Scholar
  79. Morris PC, Grierson D, Whttington WJ (1984) Endogenous inhibitors and germination of Beta vulgaris. J Exp Bot 35:994–1002Google Scholar
  80. Munerati O (1910) Osservazioni sulla bietola selvaggia (Beta maritima L.). Staz Sper Ag ItalGoogle Scholar
  81. Munerati O (1920) Sulla salita in seme il primo anno delle bietole coltivate. Bollettino Associazione italiana delle Industrie dello Zucchero e dell’Alcool 90–95Google Scholar
  82. Munerati O, Mezzadroli G, Zapparoli TV (1913) Osservazioni sulla Beta maritima L., nel triennio 1910–1912. Stazioni Sperimentali Agricole Italiane 46:415–445Google Scholar
  83. Oldemeyer RK (1957) Sugar beet male sterility. J ASSBT 9:381–386Google Scholar
  84. Orndruff R (1969) The importance or reproductive biology for taxonomy. Taxon 18:133–212Google Scholar
  85. Owen FV (1942a) Inheritance of cross- and self-sterility in Beta vulgaris L. J Agr Res 64:679–698Google Scholar
  86. Owen FV (1942b) Male sterility in sugar beet produced by complementary effects of cytoplasmic and Mendelian inheritance. Am J Bot 29:692Google Scholar
  87. Owen FV (1945) Cytoplasmically inherited male-sterility in sugar beets. J Agr Res 71:423–440Google Scholar
  88. Owen FV (1952) Mendelian male sterility in sugar beets. Proc ASSBF7:371–376Google Scholar
  89. Panella l, Lewellen RT (2007) Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica 154:382–400CrossRefGoogle Scholar
  90. Peto FH (1964) Methods of loosening tight seed caps in monogerm seed to improve germination. J Am Soc Sugar Beet Technol 13:281–286Google Scholar
  91. Richard P, Raymond P, Curbineau F, Pradet A (1989) Effect of the pericarp on sugar beet (Beta vulgaris L.) seed germination: study of the energy metabolism. Seed Sci Technol 17:485–498Google Scholar
  92. Santos DSB, Pereira MFA (1989) Restrictions of the tegument to the germination of Beta vulgaris L. seeds. Seed Sci Technol 17:601–612Google Scholar
  93. Saumitou-Laprade P, Rouwendal GJA, Cuguen J, Krens FA, Michaelis G (1993) Different CMS sources found in Beta vulgaris ssp maritima: mitochondrial variability in wild populations revealed by a rapid screening procedure. Theor Appl Genet 85:529–535PubMedCrossRefPubMedCentralGoogle Scholar
  94. Savitsky H (1950) A method of determining self-fertility of self sterility in sugar beet based upon the stage of ovule development shortly after flowering. Proc ASSBT 6:198–201Google Scholar
  95. Schondelmaier J, Jung C (1997) Chromosomal assignment of the nine linkage groups of sugar beet (Beta vulgaris L.) using primary trisomics. Theor Appl Genet 95:590–596CrossRefGoogle Scholar
  96. Scott RK, Longden PC (1970) Pollen release by diploid and tetraploid sugar beet planta. Ann Appl Biol 66:129–136CrossRefGoogle Scholar
  97. Sester M, Dürr C, Darmency H, Colbach N (2006) Evolution of weed beet (Beta vulgaris L.) seed bank: quantification of seed survival, dormancy, germination and pre-emergence growth. Eur J Agron 24:19–25CrossRefGoogle Scholar
  98. Smit AL (1983) Influence of external factors on growth and development of sugar beet (Beta vulgaris) (in English with Dutch summaries). Pudoc, Wageningen, The NetherlandsGoogle Scholar
  99. Smith GA (1987) Sugar Beet. In: Fehr WR (ed) Principles of Cultivar Development. Macmillan Publishing Company, New York, pp 577-625Google Scholar
  100. Thompson JD, Tarayre M (2000) Exploring the genetic basis and proximate causes of female fertility advantage in gynodioecious Thymus vulgaris. Evolution 54:1510–1520Google Scholar
  101. Touzet P, Villain S, Buret L, Martin H, Holl A-C, Poux C, Cuguen J (2018) Chloroplastic and nuclear diversity of wild beets at a large geographical scale: toward an evolutionary history of the Beta section. Ecol Evol 8:2890–2900.  https://doi.org/10.1002/ece3.3774CrossRefPubMedPubMedCentralGoogle Scholar
  102. van Dijk H (1998) Variation for developmental characters in Beta vulgaris subsp. maritima in relation to latitude: The importance of in situ conservation. In: Frese L, Panella L, Srivastava HM, Lange W (eds) A report on the 4th international Beta genetic resources workshop and world Beta network Conference held at the Aegean Agricultural Research Institute, Izmir, Turkey, 28 Feb–3 Mar 1996. International Plant Genetic Resources Institute, Rome, Italy, pp 30–38Google Scholar
  103. van Dijk H (2009) Ageing effects in an iteroparous plant species with a variable life span. Ann Bot 104:115–124PubMedPubMedCentralCrossRefGoogle Scholar
  104. van Dijk H, Boudry P (1992) Genetic varitaion for life histories in Beta maritima. International Beta Genetic Resoures Network. A report on the 2nd international WBN workshop, Institute for Crop Science and Plant Breeding, Braunschweig, Germany, 24–28 June 1991. IPGRI, Rome, pp 9–16Google Scholar
  105. van Dijk H, Boudry P, McCombie H, Vernet P (1997) Flowering time in wild beet (Beta vulgaris ssp. maritima) along a latitudinal cline. Acta Oecol 18:47–60CrossRefGoogle Scholar
  106. van Dijk H, Desplanque B (1999) European Beta: crops and their wild and weedy relatives. In: van Raamsdonk LWD, Den Nijs JCM (eds) Plant evolution in man-made habitats. Hugo de Vries Laboratory, Amsterdam, The Netherlands, pp 257–270Google Scholar
  107. van Dijk H, Hautekèete NC (2007) Long day plants and the response to global warming: Rapid evolutionary change in day length sensitivity is possible in wild beet. Evol Biol 20:349–357CrossRefGoogle Scholar
  108. van Dijk H, Hautekèete NC (2014) Evidence of genetic change in the flowering phenology of sea beets along a latitudinal cline within two decades. J Evol Biol 27:1420–9101Google Scholar
  109. Villain S (2007) Histoire evolutive de la section Beta. PhD Universite des Sciences et Technologies de Lille, FranceGoogle Scholar
  110. Vleeshouwers LM, Bouwmeester HJ, Karssen CM (1995) Redefining seed dormancy: an attempt to integrate physiology and ecology. J Ecol 83:1031–1037CrossRefGoogle Scholar
  111. von Lippmann EO (1925) Geschichte der Rübe (Beta) als Kulturpflanze. Verlag Julius Springer, Berlin, GermanyCrossRefGoogle Scholar
  112. von Proskowetz E (1894) Über die Culturversuche mit Beta maritima L. (und Beta vulgaris L.) im Jahre 1893. Österreiche-Ungarische Zeitschrift für Zuckerindustrie und Landwirtschaft 31:201–223Google Scholar
  113. Wagmann K, Hautekèete NC, Piquot Y, van Dijk H (2010) Potential for evolutionary change in the seasonal timing of germination in sea beet (Beta vulgaris ssp. maritima) mediated by seed dormancy. Genetica 138:763–773PubMedCrossRefPubMedCentralGoogle Scholar
  114. Wagmann K, Hautekèete NC, Piquot Y, Meunier C, Schmitt E, van Dijk H (2012) Seed dormancy distribution: explanatory ecological factors. Ann Bot 110:1205–1219PubMedPubMedCentralCrossRefGoogle Scholar
  115. Weihe A, Dudareva NA, Veprev SG, Maletsky SI, Melzer R, Salganik RI, Borner T (1991) Molecular characterization of mitochondrial DNA of different subtypes of male-sterile cytoplasms of the sugar beet Beta vulgaris L. Theor Appl Genet 82:11–16PubMedCrossRefPubMedCentralGoogle Scholar
  116. Xie W, Kang C, Wang J, Wang B, Guo D (1996) Molecular characterization of a new type of cytoplasmic male sterile sugar beet. Sci China Ser C Life Sci 39:53–62Google Scholar
  117. Yamamoto MP, Kubo T, Mikami T (2005) The 5’-leader sequence of sugar beet mitochondrial atp6 encodes a novel polypeptide that is characteristic of Owen cytoplasmic male sterility. Molecular genetics and genomics. Mol Genet Genomics 273:342–349PubMedCrossRefPubMedCentralGoogle Scholar
  118. Yamamoto MP, Shinada H, Onodera Y, Komaki C, Mikami T, Kubo T (2008) A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants. Plant J 54:1027–1036Google Scholar
  119. Zajkovskaja NE (1960) Pollen sterility in sugar beet (in Russian). Agrobiologia (Agrobiology) 778–780Google Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Authors and Affiliations

  • Nina Hautekeete
    • 1
    Email author
  • Henk van Dijk
    • 1
  • Pascal Touzet
    • 1
  • Enrico Biancardi
    • 2
  1. 1.Lab. Evolution Ecologie Paleontologie UMR CNRS 8198Univ. Lille, CNRSLilleFrance
  2. 2.Formerly Stazione Sperimentale di BieticolturaRovigoItaly

Personalised recommendations