• Enrico BiancardiEmail author
  • Marco de Biaggi


Since few references on the morphology of Beta maritima are available, most information for this chapter comes from the cultivated forms of Beta vulgaris. This is justified by the fact that the two species or subspecies are very similar to each other, so that their safe classification only on the basis of the phenotype is rather difficult. A striking feature of Beta maritima gleaned from this review is how variable and adaptive it is. The species is fairly plastic allowing it to live in many different and sometimes in extreme environments. This capacity for adaptation has been correlated with its breeding system, which allows the rapid change of the reproduction systems, flowering time, life span, pollen release, and so on, according to the modified local conditions. This is evident observing the differences between the Mediterranean populations (bolting, short life cycles, form of the root, etc.) and those living on the North-Atlantic coasts of Europe. This chapter provides an overview of the phenotypic features of sea beet.


Beta maritima Seed Root Flower Pollen Isolation 


  1. Anonymous (1995) Descriptors for Beta. CPRO-DLO, Wageningen, The Netherlands and IPGRI, Rome, ItalyGoogle Scholar
  2. Archimowitsch A (1949) Control of pollination in sugar beet. Bot Rev 15:613–628CrossRefGoogle Scholar
  3. Arnaud JF (2008) Importance de la dispersion dans la structuration génétique et l’évolution du système de reproduction chez une espèce gynodioique. Université des Sciences et Technologies de Lille, FranceGoogle Scholar
  4. Artschwager E (1926) Anatomy of the vegetative organs of sugar beet. J Agr Res 33:143–176Google Scholar
  5. Artschwager E (1927a) Development of flowers and seed in the sugar beet. J Agr Res 34:1–25Google Scholar
  6. Artschwager E (1927b) Micro and macrosporogenesis in sugar beet with special reference to the problem of incompatibility. Memoirs Hort Soc NY, USA 3:295–297Google Scholar
  7. Artschwager E, Starrett R (1933) The time factor in fertilization and embryo development in the sugar beet. J Agr Res 47:823–843Google Scholar
  8. Bartsch D, Pohl-Orf M (1996) Ecological aspects of transgenic sugar beet: transfer and expression of herbicide resistance in hybrids with wild beets. Euphytica 91:55–58Google Scholar
  9. Bartsch D, Brand U, Morak C, Pohl-Orf M, Schuphan I, Ellstrand NC (2001) Biosafety of hybrids between transgenic virus-resistant sugar beet and Swiss chard. Ecol Appl 11:142–147CrossRefGoogle Scholar
  10. Bateman A (1947) Contamination in seed crops. Heredity 1:235–246CrossRefGoogle Scholar
  11. Baxter W (1837) British phaenerogamous botany. Parker, London, UKGoogle Scholar
  12. Baydara EP (2008) Salt stress responsive proteins identification in wild sugar beet (Beta maritima) by mass spectrometry. M.S. Ìzmir Institute of TechnologyGoogle Scholar
  13. Biancardi E, McGrath JM, Panella LW, Lewellen RT, Stevanato P (2010) Sugar beet. In: Bradshaw JE (ed) Root and tuber crops. Springer, New York, NY USA, pp. 173–219Google Scholar
  14. Boudry P, Mörchen M, Saumitou-Laprade P, Vernet P, Dijk H (1993) The origin and evolution of weed beets: consequences for the breeding and release of herbicide-resistant transgenic sugar beets. Theor Appl Genet 87:471–478PubMedCrossRefGoogle Scholar
  15. Brand U (1997) Untersuchungen zur Diversität in italienischen Wildpopulationen von Beta vulgaris L. subsp. maritima – Ein Beitrag zur ökologischen Risikoabschätzung von transgenen Kulturpflanzen. Diplomarbeit RWTH-Aachen, GermanyGoogle Scholar
  16. Campbell SC, Mast AA (1971) Seed Production. In: Johnson RT, Alexander JT, Rush GE, Hawkes GR (eds) Advances in sugarbeet production: principles and practices. The Iowa State University Press, Ames IA, USA, pp 438–450Google Scholar
  17. Chamberlain AC (1967) Cross-pollination between fields of sugar beet. Q J Roy Meteorol Soc 93:509–515Google Scholar
  18. Cooke DA, Scott RK (1993) The sugar beet crop: Science into practice, 1st edn. Chapman & Hall, London, UKCrossRefGoogle Scholar
  19. Copeland LO, McDonald MB (2001) Principles of seed science and technology, 4th edn. Kluwer Academic Publishers, Boston MA, USACrossRefGoogle Scholar
  20. Coumans M, Come D, Gaspar T (1976) Stabilized dormancy in sugar beet fruits I. Seed coats as physiochemical barrier to oxygen. Bot Gaz 137:274–278Google Scholar
  21. Dale MFB, Ford-Lloyd BV (1985) The significance of multigerm seedballs in the genus Beta. Watsonia 15:265–267Google Scholar
  22. Dale MFB, Ford-Lloyd BV, Arnold MH (1985) Variation in some agronomically important characters in a germplasm collection of beet (Beta vulgaris L.). Euphytica 34:449–455CrossRefGoogle Scholar
  23. de Candolle A (1884) Der Ursprung der Culturpflazen. Brockhaus, Lipsia, GermanyGoogle Scholar
  24. de Cauwer I, Dufaÿ M, Cuguen J, Arnaud J-F (2010) Effects of fine-scale genetic structure on male mating success in gynodioecious Beta vulgaris subsp. maritima. Mol Ecol 19:1540–1558CrossRefGoogle Scholar
  25. de Vilmorin JL (1923) L’ hérédité de la betterave cultivée. Gauthier-Villars, Paris, FranceGoogle Scholar
  26. de Vries U (1905) Species and varieties. Open Court Publishing, Chcago, USAGoogle Scholar
  27. Draycott AP (2006) Sugar Beet, 1st edn. Blackwell Publishing Ltd, Oxford, UKCrossRefGoogle Scholar
  28. Dufaÿ M, Touzet P, Maurice S, Cuguen J (2007) Modeling the maintenance of male-fertile cytoplasm in a gyodioecious population. Heredity 99:349–356PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ellstrand NC (2003) Current knowledge of gene flow in plants: implications for transgene flow. Philos Trans R Soc Lond B Biol Sci 358:1163–1170PubMedPubMedCentralCrossRefGoogle Scholar
  30. Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New York, USAGoogle Scholar
  31. Fénart S, Austerlitz F, Cuguen J, Arnaud J-F (2007) Long distance pollen-mediated gene flow at a landscape level: the weed beet as a case study. Mol Ecol 16:3801–3813PubMedCrossRefGoogle Scholar
  32. Flores-Olvera H, Smets E, Vrijdaghs A (2008) Floral and inflorescence morphology and ontogeny in Beta vulgaris, with special emphasis on the ovary position. Ann Botany 102:643–651CrossRefGoogle Scholar
  33. Free JW (1975) Insect pollination of sugar beet. Ann Appl Biol 81:127–134CrossRefGoogle Scholar
  34. Gepts P, Papa R (2003) Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. Environ Biosafety Res 2:89–103PubMedCrossRefGoogle Scholar
  35. Harding K, Harris PS (1994) Risk assessment of the release of genetically modified plants: a review. Ministry of Agriculture, Fisheries and Food, London, UKGoogle Scholar
  36. Hayward DH (1938) The structure of economic plants. MacMillan and Co., New York, USAGoogle Scholar
  37. Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:255–257CrossRefGoogle Scholar
  38. Kapteijns AJAM (1993) Risk assessment of genetically modified crops. Potential of four arable crops to hybridize with wild flora. Euphytica 66:145–149Google Scholar
  39. Klotz KL (2005) Anatomy and Physiology. In: Biancardi E, Campbell LG, Skaracis GN, de Biaggi M (eds) Genetics and breeding of sugar beet. Science Publishers Inc., Enfield (NH), USA, pp 9–19Google Scholar
  40. Knapp E (1958) Beta rüben. In: Roemer R, Rudorf W (eds) Handbuch der Pflanzenzüchtung. Parey, Paul, Berlin, Germany, pp. 196–284Google Scholar
  41. Krasochkin VT (1936) New facts in beet-root breeding. Bull Appl Bot (Leningrad) 19:27Google Scholar
  42. Letschert JPW (1993) Beta section Beta: biogeographical patterns of variation, and taxonomy. PhD Wageningen Agricultural University Papers 93-1Google Scholar
  43. Letschert JPW, Frese L (1993) Analysis of morphological variation in wild beet (Beta vulgaris L.) from Sicily. Genet Res Crop Evol 40:15–24CrossRefGoogle Scholar
  44. Lexander K (1980) Present knowledge on sugar beet bolting mechanisms. In: Proceedings of the international institute sugar beet research 43rd winter congress. IIRB, Brussels, Belgium, pp 245–258Google Scholar
  45. Linnaeus (1753) Species plantarium exhibentes plantas rite cognitas etc., 1st edn. Stockholm, SwedenGoogle Scholar
  46. McGrath JM, Saccomani M, Stevanato P, Biancardi E (2007) Beet. In: Kole C (ed) Vegetables. Springer, Berlin, pp 191–207CrossRefGoogle Scholar
  47. Meier FC, Artschwager E (1938) Airplane collections of sugar beet pollen. Science 88:507–508PubMedCrossRefGoogle Scholar
  48. Moldenhawer K (1935) Studies on wild beet (Beta maritima) of the North Sea Region. Br Sugar Beet Rev 9:47–49Google Scholar
  49. Munerati O (1920) Sulla salita in seme il primo anno delle bietole coltivate. Bollettino Associazione italiana delle Industrie dello Zucchero e dell’Alcool 90–95Google Scholar
  50. Munerati O, Mezzadroli G, Zapparoli TV (1913) Osservazioni sulla Beta maritima L., nel triennio 1910–1912. Stazioni Sperimentali Agricole Italiane 46:415–445Google Scholar
  51. OECD. Environment, Health and Safety Publications Series on Harmonization of Regulatory Oversight in Biotechnology Nr. 18. Consensus Document on the Biology of Beta vulgaris L. (Sugar beet). 2001. Paris, France, Environment Directorate Organisation for Economic Co-operation and Development.
  52. Oksijuk P (1927) Entwicklungsgeschichte der Zuckerrübe. Bulletin Bot Garden, Kiev, Russia 12:416–450Google Scholar
  53. Owen FV (1944) Variability in the species Beta vulgaris L. in relation to breeding possibilities with sugar beets. J Am Soc Agron 36:566–569CrossRefGoogle Scholar
  54. Savitsky VF (1952) Monogerm sugar beets in the United States. Proc Am Soc Sugar Beet Technol 7:156–159Google Scholar
  55. Schindler F (1891) Über die Stammpflanze der Runkel- und Zuckerrüben. Botanisches Centralblatt 15:6–16Google Scholar
  56. Schneider F (1942) Züchtung der Beta Rüben. In: Parey P (ed) Handbuch der Pflanzenzüchtung. Berlin, GermanyGoogle Scholar
  57. Scott RK, Longden PC (1970) Pollen release by diploid and tetraploid sugar beet planta. Ann Appl Biol 66:129–136CrossRefGoogle Scholar
  58. Smith GA (1987) Sugar beet. In: Fehr WR (ed) Principles of cultivar development. Macmillan Publishing Company, New York, pp 577–625Google Scholar
  59. Smith JE (1803) English botany. Taylor Printer, London, UKGoogle Scholar
  60. Srivastava HM, Shahi HN, Kumar R, Bhatnagar S (2000) Genetic diversity in Beta vulgaris ssp.Google Scholar
  61. Stanley RG, Linskens HF (1974) pollen: biology biochemistry management. Springer, Heidelberg, New YorkGoogle Scholar
  62. Stehlik V (1937) Die wilde Rübe (Beta maritima) verglichen in unserem Klima mit der heutigen veredelten Zuckerrube. Zeitschrift Zuckerindustrie Czek Republ 61:236–240Google Scholar
  63. Treu R, Emberlin J (2000) Pollen dispersal in the crops maize, oilseed rape, potatoes, sugar beet and wheat. Soil Association from the National Pollen Research UnitGoogle Scholar
  64. Tufto J, Raybould AF, Hinfaar K, Engen S (1998) Analysis of genetic structure and dispersal patterns in a populations of sea beet. Genetics 149:1975–1985PubMedPubMedCentralGoogle Scholar
  65. Tyldesley JB (1978) Out-crossing in sugar-beet due to airborne pollen. Agric Meteorol 19:463–469CrossRefGoogle Scholar
  66. van Roggen PM (1997) The sex life of sugar beet. Br Sugar Beet Rev 65:28–30Google Scholar
  67. van Roggen PM, Debenham B, Hedden P, Phillips AL, Thomas SG (1998) A model for control of bolting and flowering in sugar beet and the involvement of gibberellins. Flower Newsl 25:45–49Google Scholar
  68. Villain S (2007) Histoire evolutive de la section Beta. PhD Universite des Sciences et Technologies de LilleGoogle Scholar
  69. von Lippmann EO (1925) Geschichte der Rübe (Beta) als Kulturpflanze. Verlag Julius Springer, Berlin, GermanyCrossRefGoogle Scholar
  70. von Proskowetz E (1894) Über die Culturversuche mit Beta maritima L. (und Beta vulgaris L.) im Jahre 1893. Österreiche-Ungarische Zeitschrift für Zuckerindustrie und Landwirtschaft 31:201–223Google Scholar
  71. von Proskowetz E (1896) Über die Culturversuche mit Beta im Jahre 1895. Österreiche-Ungarische Zeitschrift für Zuckerindustrie und Landwirtschaft 33:711–766Google Scholar
  72. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedPubMedCentralGoogle Scholar
  73. Wright S (1946) Isolation by distance under diverse systems of mating. Ibidem 31:39–59Google Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Authors and Affiliations

  1. 1.Stazione Sperimentale di BieticolturaRovigoItaly
  2. 2.Sugar Beet Breedng ConsultantMassalombardaItaly

Personalised recommendations