Meat and Meat Products

  • Wim Geeraerts
  • Despoina Angeliki Stavropoulou
  • Luc De Vuyst
  • Frédéric LeroyEmail author


Meat is an important foodstuff, both from a nutritional and economic standpoint, available under a wide variety of raw and processed variants, including cooked, dry-cured, fermented, and smoked products. This chapter outlines the microbial diversity of meat and different meat products. Considerable microbial heterogeneity is found when comparing between meat types and their derived products, which is largely to be ascribed to variability on the level of the substrates, ingredients, and recipes, the processing conditions, and the storage methods. Upon consumption, the microorganisms that are present within the meat matrix enter the human gastrointestinal system and potentially interact with the gut microbiota. Whether they thus play a role in health and disease still needs to be established.


Meat microbiome Raw meat microbiome Red meat microbiome Poultry microbiome Meat fermented products 



The authors acknowledge financial support of the Research Council of the Vrije Universiteit Brussel (SRP7 and IOF342 projects, and in particular the HOA21 project ‘Artisan quality of fermented foods: myth, reality, perceptions, and constructions’ and the Interdisciplinary Research Program IRP2 ‘Food quality, safety, and trust since 1950: societal controversy and biotechnological challenges’), and the Hercules Foundation (projects UABR 09/004 and UAB 13/002).


  1. Ahmed, J., Mulla, M., & Arfat, Y. A. (2017). Application of high-pressure processing and polylactide/cinnamon oil packaging on chicken sample for inactivation and inhibition of Listeria monocytogenes and Salmonella Typhimurium, and post-processing film properties. Food Control, 78, 160–168.CrossRefGoogle Scholar
  2. Albano, H., van Reenen, C. A., Todorov, S. D., Cruz, D., Fraga, L., Hogg, T., Dicks, L. M. T., & Teixeira, P. (2009). Phenotypic and genetic heterogeneity of lactic acid bacteria isolated from “Alheira”, a traditional fermented sausage produced in Portugal. Meat Science, 82, 389–398.PubMedCrossRefGoogle Scholar
  3. Álvarez-Astorga, M., Capita, R., Alonso-Calleja, C., & Capita, R. (2002). Microbiological quality of retail chicken by-products in Spain. Meat Science, 62, 45–50.PubMedCrossRefGoogle Scholar
  4. Ammor, S., Rachman, C., Chaillou, S., Prévost, H., Dousset, X., Zagorec, M., Dufour, E., & Chevallier, I. (2005). Phenotypic and genotypic identification of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages. Food Microbiology, 22, 373–382.CrossRefGoogle Scholar
  5. Andrade, M. J., Rodríguez, M., Casado, E., & Córdoba, J. J. (2010). Efficiency of mitochondrial DNA restriction analysis and RAPD-PCR to characterize yeasts growing on dry-cured Iberian ham at the different geographic areas of ripening. Meat Science, 84, 377–383.PubMedCrossRefGoogle Scholar
  6. Aquilanti, L., Garofalo, C., Osimani, A., Silvestri, G., Vignaroll, C., & Clementi, F. (2007). Isolation and molecular characterization of antibiotic-resistant lactic acid bacteria from poultry and swine meat products. Journal of Food Protection, 70, 557–565.PubMedCrossRefGoogle Scholar
  7. Aquilanti, L., Garofalo, C., Osimani, A., & Clementi, F. (2016). Ecology of lactic acid bacteria and coagulase-negative cocci in fermented dry sausages manufactured in Italy and other Mediterranean countries: An overview. International Food Research Journal, 23, 429–445.Google Scholar
  8. Arnold, J. W. (2007). Bacterial contamination on rubber picker fingers before, during, and after processing. Poultry Science, 86, 2671–2675.PubMedCrossRefGoogle Scholar
  9. Arvanitoyannis, I. S., & Stratakos, A. C. (2012). Application of modified atmosphere packaging and active/smart technologies to red meat and poultry: A review. Food Bioprocess Technology, 5, 1423–1446.CrossRefGoogle Scholar
  10. Asefa, D. T., Gjerde, R. O., Sidhu, M. S., Langsrud, S., Kure, C. F., Nesbakken, T., & Skaar, I. (2009a). Moulds contaminants on Norwegian dry-cured meat products. International Journal of Food Microbiology, 128, 435–439.PubMedCrossRefGoogle Scholar
  11. Asefa, D. T., Møretrø, T., Gjerde, R. O., Langsrud, S., Kure, C. F., Sidhu, M. S., Nesbakken, T., & Skaar, I. (2009b). Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products. International Journal of Food Microbiology, 133, 135–140.PubMedCrossRefGoogle Scholar
  12. Asefa, D. T., Kure, C. F., Gjerde, R. O., Omer, M. K., Langsrud, S., Nesbakken, T., & Skaar, A. (2010). Fungal growth pattern, sources and factors of mould contamination in a dry-cured meat production facility. International Journal of Food Microbiology, 140, 131–135.PubMedCrossRefGoogle Scholar
  13. Ashraf, R., & Shah, N. P. (2011). Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium ssp. in yogurt—A review. International Journal of Food Microbiology, 149, 194–208.PubMedCrossRefGoogle Scholar
  14. Audenaert, K., D’Haene, K., Messens, K., Ruyssen, T., Vandamme, P., & Huys, G. (2010). Diversity of lactic acid bacteria from modified atmosphere packaged sliced cooked meat products at sell-by date assessed by PCR-denaturing gradient gel electrophoresis. Food Microbiology, 27, 12–18.PubMedCrossRefGoogle Scholar
  15. Aymerich, T., Martín, B., Garriga, M., & Hugas, M. (2003). Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic staphylococci from artisanal low-acid sausages. Applied and Environmental Microbiology, 69, 4583–4594.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Aymerich, T., Martín, B., Garriga, M., Vidal-Carou, M. C., Bover-Cid, S., & Hugas, M. (2006). Safety properties and molecular strain typing of lactic acid bacteria isolated from slightly fermented sausages. Journal of Applied Microbiology, 100, 40–49.PubMedCrossRefGoogle Scholar
  17. Balamatsia, C. C., Patsias, A., Kontominas, M. G., & Savvaidis, I. N. (2007). Possible role of volatile amines as quality-indicating metabolites in modified atmosphere-packaged chicken fillets: Correlation with microbiological and sensory attributes. Food Chemistry, 104, 1622–1628.CrossRefGoogle Scholar
  18. Ballester-Costa, C., Sendra, E., Fernández-López, L., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2017). Assessment of antioxidant and antibacterial properties on meat homogenates of essential oils obtained from four Thymus species achieved from organic growth. Foods, 6, 59.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Barbosa, J., Borges, S., & Teixeira, P. (2014). Selection of potential probiotic Enterococcus faecium isolated from Portuguese fermented food. International Journal of Food Microbiology, 191, 144–148.PubMedCrossRefGoogle Scholar
  20. Bartkiene, E., Bartkevics, V., Mozuriene, E., Krungleviciute, V., Novoslavskij, A., Santini, A., Rozentale, I., Juodeikiene, G., & Cizeikiene, D. (2017). The impact of lactic acid bacteria with antimicrobial properties on biodegradation of polycyclic aromatic hydrocarbons and biogenic amines in cold smoked pork sausages. Food Control, 71, 285–292.CrossRefGoogle Scholar
  21. Becker, K., Heilmann, C., & Peters, G. (2014). Coagulase-negative staphylococci. Clinical Microbiology Reviews, 27, 870–926.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bell, R. G. (2001). Meat packaging: Protection, preservation and presentation. In Y. H. Hui, W. K. Nip, R. W. Rogers, & G. A. Young (Eds.), Meat science and applications (pp. 463–490). New York: Marcel Dekker.Google Scholar
  23. Bell, V., Ferrão, J., & Fernandes, T. (2017). Nutritional guidelines and fermented food frameworks. Foods, 6, 65.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Belluco, S., Barco, L., Roccato, A., & Ricci, A. (2015). Variability of Escherichia coli and Enterobacteriaceae counts on pig carcasses: A systematic review. Food Control, 55, 115–126.CrossRefGoogle Scholar
  25. Benito, M. J., Martín, A., Aranda, E., Pérez-Nevado, F., Ruiz-Moyano, S., & Cordoba, M. G. (2007). Characterization and selection of autochthonous lactic acid bacteria isolated from traditional Iberian dry-fermented salchichón and chorizo sausages. Journal of Food Protection, 72, 193–201.Google Scholar
  26. Benson, A. K., David, J. R. D., Gilbreth, S. E., Smith, G., Nietfeldt, J., Legge, R., Kim, J., Sinha, R., Duncan, C. E., Ma, J., & Singh, I. (2014). Microbial successions are associated with changes in chemical profiles of a model refrigerated fresh pork sausage during an 80-day shelf life study. Applied and Environmental Microbiology, 80, 5178–5194.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Björkroth, J., Ristiniemi, M., Vandamme, P., & Korkeala, H. (2005). Enterococcus species dominating in fresh modified-atmosphere-packaged, marinated broiler legs are overgrown by Carnobacterium and Lactobacillus species during storage at 6°C. International Journal of Food Microbiology, 97, 267–276.PubMedCrossRefGoogle Scholar
  28. Bomdespacho, L. Q., Cavallini, D. C. U., Zavarizi, A. C. M., Pinto, R. A., & Rossi, E. A. (2014). Evaluation of the use of probiotic acid lactic bacteria in the development of chicken hamburger. International Food Research Journal, 21, 965–972.Google Scholar
  29. Borch, E., & Arinder, P. (2002). Bacteriological safety issues in red meat and ready-to-eat meat products, as well as control measures. Meat Science, 62, 381–390.PubMedCrossRefGoogle Scholar
  30. Borilova, G., Hulankova, R., Svobodova, I., Jezek, F., Hutarova, Z., Vecerek, V., & Steinhauserova, I. (2016). The effect of storage conditions on the hygiene and sensory status of wild boar meat. Meat Science, 118, 71–77.PubMedCrossRefGoogle Scholar
  31. Brightwell, E., Boerema, J., Mills, J., Mowat, E., & Pulford, D. (2006). Identifying the bacterial community on the surface of Intralox™ belting in a meat boning room by culture-dependent and culture-independent 16S rDNA sequence analysis. International Journal of Food Microbiology, 109, 47–53.PubMedCrossRefGoogle Scholar
  32. Brightwell, G., Clemens, R., Adam, K., Urlich, S., & Boerema, J. (2009). Comparison of culture-dependent and independent techniques for characterisation of the microflora of peroxyacetic acid treated, vacuum-packaged beef. Food Microbiology, 26, 283–288.PubMedCrossRefGoogle Scholar
  33. Buchanan, R. L., Garris, L. G. M., Hayman, M. M., Jackson, T. C., & Whiting, R. C. (2017). A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control, 75, 1–13.CrossRefGoogle Scholar
  34. Budde, B. B., Hornbaek, T., Jacobsen, T., Barkholt, V., & Koch, A. G. (2003). Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: Culture isolation, bacteriocin identification, and meat application experiments. International Journal of Food Microbiology, 83, 171–184.PubMedCrossRefGoogle Scholar
  35. Caparros Megido, R., Sablon, L., Geuens, M., Brostaux, Y., Alabi, T., Blecker, C., Drugmand, D., Haubruge, É., & Francis, F. (2014). Edible insects acceptance by Belgian consumers: Promising attitude for entomophagy development. Journal of Sensory Studies, 29, 14–20.CrossRefGoogle Scholar
  36. Carr, P. R., Walter, V., Brenner, H., & Hoffmeister, M. (2016). Meat subtypes and their association with colorectal cancer: Systematic review and meta-analysis. International Journal of Cancer, 138, 293–302.PubMedCrossRefGoogle Scholar
  37. Carrizosa, E., Benito, M. J., Ruiz-Moyano, S., Hernández, A., Villalobos, C., Martin, A., & Córdoba, M. G. (2017). Bacterial communities of fresh goat meat packaged in modified atmosphere. Food Microbiology, 65, 57–63.PubMedCrossRefGoogle Scholar
  38. Castellano, P., & Vignolo, G. (2006). Inhibition of Listeria innocua and Brochothrix thermosphacta in vacuum-packaged meat by addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Letters in Applied Microbiology, 43, 194–199.PubMedCrossRefGoogle Scholar
  39. Castellano, P., González, C., Carduza, F., & Vignolo, G. (2010). Protective action of Lactobacillus curvatus CRL705 on vacuum-packaged raw beef. Effect on sensory and structural characteristics. Meat Science, 85, 394–401.PubMedCrossRefGoogle Scholar
  40. Castellano, P., Belfiore, C., & Vignolo, G. (2011). Combination of bioprotective cultures with EDTA to reduce Escherichia coli O157:H7 in frozen ground-beef patties. Food Control, 22, 1461–1465.CrossRefGoogle Scholar
  41. Cavalheiro, C. P., Ruiz-Capillas, C., Herrero, A. M., Jiménez-Colmenero, F., de Menezes, C. R., & Fries, L. L. M. (2015). Application of probiotic delivery systems in meat products. Trends in Food Science and Technology, 46, 120–131.CrossRefGoogle Scholar
  42. Cerveny, J., Meyer, J. D., & Hall, P. A. (2010). Microbiological spoilage of meat and poultry products. In W. H. Sperber & M. P. Doyle (Eds.), Compendium of the microbiological spoilage of foods and beverages (pp. 69–86). New York: Springer.Google Scholar
  43. Chaillou, S., Champomier-Vergès, M. C., Cornet, M., Crutz-Le Coq, A. M., Dudez, A. M., Martin, V., Beaufils, S., Darbon-Rongère, E., Bossy, R., Loux, V., & Zagorec, M. (2005). The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23k. Nature Biotechnology, 23, 1527–1533.PubMedCrossRefGoogle Scholar
  44. Chaillou, S., Christieans, S., Rivollier, M., Lucquin, I., Champomier-Vergès, M. C., & Zagorec, M. (2014). Quantification and efficiency of Lactobacillus sakei strain mixtures used as protective cultures in ground beef. Meat Science, 97, 332–338.PubMedCrossRefGoogle Scholar
  45. Chaillou, S., Choulot-Talmon, A., Caekebeke, H., Cardinal, M., Christieans, S., Denis, C., Desmonts, M. H., Dousset, X., Feurer, C., Hamon, E., Joffraud, J. J., La Carbona, S., Leroi, F., Leroy, S., Lorre, S., Macé, S., Pilet, M. F., Prévost, H., Rivollier, M., Roux, D., Talon, R., Zagorec, M., & Champomier-Vergès, M. C. (2015). Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. The ISME Journal, 9, 1105–1118.PubMedCrossRefGoogle Scholar
  46. Chang, J. Y., Shin, S. M., Chun, J., Lee, J. H., & Seo, J. K. (2011). Pyrosequencing-based molecular monitoring of the intestinal bacterial colonization in preterm infants. Journal of Pediatric Gastroenterology and Nutrition, 53, 512–519.PubMedGoogle Scholar
  47. Chevallier, I., Ammor, S., Laguet, A., Labayle, S., Castanet, V., Dufour, E., & Talon, R. (2006). Microbial ecology of a small-scale facility producing traditional dry sausage. Food Control, 17, 446–453.CrossRefGoogle Scholar
  48. Chilton, S. N., Burton, J. P., & Reid, G. (2015). Inclusion of fermented foods in food guides around the world. Nutrients, 7, 390–404.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Chipley, J. R., & May, K. N. (1968). Survival of aerobic and anaerobic bacteria in chicken meat during freeze-dehydration, rehydration and storage. Applied Microbiology, 16, 445–449.PubMedPubMedCentralGoogle Scholar
  50. Chouliara, E., Karatapanis, A., Savvaidis, I. N., & Kontominas, M. G. (2007). Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4°C. Food Microbiology, 24, 607–617.PubMedCrossRefGoogle Scholar
  51. Cocconcelli, P. S., & Fontana, C. (2014). Bacteria. In F. Toldrá (Ed.), Handbook of fermented meat and poultry (2nd ed., pp. 117–128). Hoboken, NJ: Wiley-Blackwell.Google Scholar
  52. Cocolin, L., Urso, R., Rantsiou, K., Cantoni, C., & Comi, G. (2006). Dynamics and characterization of yeasts during natural fermentation of Italian sausages. FEMS Yeast Research, 6, 692–701.PubMedCrossRefGoogle Scholar
  53. Cocolin, L., Dolci, P., Rantsiou, K., Urso, R., Cantoni, C., & Comi, G. (2009). Lactic acid bacteria ecology of three traditional fermented sausages produced in the North Italy as determined by molecular methods. Meat Science, 82, 125–132.PubMedCrossRefGoogle Scholar
  54. Comi, G., & Iacumin, L. (2012). Identification and process origin of bacteria responsible for cavities and volatile off-flavour compounds in artisan cooked ham. Food Science and Technology, 47, 114–121.Google Scholar
  55. Comi, G., Andyanto, D., Manzano, M., & Iacumin, L. (2016). Lactococcus lactis and Lactobacillus sakei as bio-protective culture to eliminate Leuconostoc mesenteroides spoilage and improve the shelf life and sensorial characteristics of commercial cooked bacon. Food Microbiology, 58, 16–22.PubMedCrossRefGoogle Scholar
  56. Coton, E., Desmonts, M. H., Leroy, S., Coton, M., Jamet, E., Christieans, S., Donnio, P. Y., Lebert, I., & Talon, R. (2010). Biodiversity of coagulase-negative staphylococci in French cheeses, dry fermented sausages, processing environments and clinical samples. International Journal of Food Microbiology, 137, 221–229.PubMedCrossRefGoogle Scholar
  57. D’Amico, S., Collins, T., Marx, J. C., Feller, G., & Gerday, C. (2006). Psychrophilic microorganisms: Challenges for life. EMBO Reports, 7, 385–389.PubMedPubMedCentralCrossRefGoogle Scholar
  58. David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559–563.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Davidson, C. M., & Cronin, F. (1973). Medium for the selective enumeration of lactic acid bacteria from foods. Applied and Environmental Microbiology, 26, 439–440.Google Scholar
  60. De Filippis, F., La Storia, A., Villani, F., & Ercolini, D. (2013). Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing. PLoS One, 8, e70222.PubMedPubMedCentralCrossRefGoogle Scholar
  61. De Smet, S., & Vossen, E. (2016). Meat: the balance between nutrition and health. A review. Meat Science, 120, 145–156.PubMedCrossRefGoogle Scholar
  62. De Vuyst, L., Falony, G., & Leroy, F. (2008). Probiotics in fermented sausage. Meat Science, 80, 75–78.PubMedCrossRefGoogle Scholar
  63. Djinovic, J., Popovic, A., & Jira, W. (2008). Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. Meat Science, 80, 449–456.PubMedCrossRefGoogle Scholar
  64. Doré, J., & Blottière, H. (2015). The influence of diet on the gut microbiota and its consequences for health. Current Opinion in Biotechnology, 32, 195–199.PubMedCrossRefGoogle Scholar
  65. Doulgeraki, A. I., Paramithiotis, S., Kagkli, D. M., & Nychas, G.-J. E. (2010). Lactic acid bacteria population dynamics during minced beef storage under aerobic or modified atmosphere packaging conditions. Food Microbiology, 27, 1028–1034.PubMedCrossRefGoogle Scholar
  66. Doulgeraki, A. I., Paramithiotis, S., & Nychas, G.-J. E. (2011). Characterization of the Enterobacteriaceae community that developed during storage of minced beef under aerobic or modified atmosphere packaging conditions. International Journal of Food Microbiology, 145, 77–83.PubMedCrossRefGoogle Scholar
  67. Doulgeraki, A. I., Ercolini, D., Villani, F., & Nychas, G.-J. E. (2012). Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology, 157, 130–141.PubMedCrossRefGoogle Scholar
  68. Drosinos, E. H., Mataragas, M., Kampani, A., Kritikos, D., & Metaxopoulos, I. (2006). Inhibitory effect of organic acid salts on spoilage flora in culture medium and cured cooked meat products under commercial manufacturing conditions. Meat Science, 73, 75–81.PubMedCrossRefGoogle Scholar
  69. Dušková, M., Kameník, J., Šedo, O., Zdráhal, Z., Salàkovà, A., Karpíšková, R., & Lačanin, I. (2015). Survival and growth of lactic acid bacteria in hot smoked dry sausages (non-fermented salami) with and without sensory deviations. Food Control, 50, 804–808.CrossRefGoogle Scholar
  70. Dušková, M., Kameník, J., Lačanin, I., Šedo, O., & Zdráhal, Z. (2016). Lactic acid bacteria in cooked hams as sources of contamination and chances of survival in the product. Food Science and Technology, 61, 492–495.Google Scholar
  71. Dutton, R. J., & Turnbaugh, P. J. (2012). Taking a metagenomic view of human nutrition. Current Opinion in Clinical and Nutrition and Metabolic Care, 15, 448–454.CrossRefGoogle Scholar
  72. Ercolini, D., Russo, F., Torrieri, E., Masi, P., & Villani, F. (2006). Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Applied and Environmental Microbiology, 70, 4663–4671.CrossRefGoogle Scholar
  73. Ercolini, D., Ferrocino, I., La Storia, A., Mauriello, G., Gigli, S., Masi, P., & Villani, F. (2009a). Development of spoilage microbiota in beef stored in nisin activated packaging. Food Microbiology, 27, 137–143.PubMedCrossRefGoogle Scholar
  74. Ercolini, D., Russo, F., Nasi, A., Ferranti, P., & Villani, F. (2009b). Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Applied and Environmental Microbiology, 75, 1990–2001.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ercolini, D., Ferrocino, I., Nasi, A., Ndagijimana, M., Vernocchi, P., La Storia, A., Laghi, L., Mauriello, M., Guerzoni, M. E., & Villani, F. (2011). Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Applied and Environmental Microbiology, 77, 7372–7381.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Erkkilä, S., Petäjä, E., Eerola, S., Lilleberg, L., Mattila-Sandholm, T., & Suihko, M. L. (2001). Flavour profiles of dry sausages fermented by selected novel meat starter cultures. Meat Science, 58, 111–116.PubMedCrossRefGoogle Scholar
  77. Fijan, S. (2014). Microorganisms with claimed probiotic properties: An overview of recent literature. International Journal of Environmental Research and Public Health, 11, 4745–4767.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Flores, M., Corral, S., Cano-García, L., Salvador, A., & Belloch, C. (2015). Yeast strains as potential aroma enhancers in dry fermented sausages. International Journal of Food Microbiology, 212, 16–24.PubMedCrossRefGoogle Scholar
  79. Fonseca, S., Cachaldora, A., Gómez, M., Franco, I., & Carballo, J. (2013). Monitoring the bacterial population dynamics during the ripening of Galician chorizo, a traditional dry fermented Spanish sausage. Food Microbiology, 33, 77–84.PubMedCrossRefGoogle Scholar
  80. Fougy, L., Desmonts, M. H., Coeuret, G., Fassel, C., Hamon, E., Hézard, B., Champomier-Vergès, M. C., & Chaillou, S. (2016). Reducing salt in raw pork sausages increases spoilage and correlates with reduced bacterial diversity. Applied and Environmental Microbiology, 82, 3928–3939.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Foulquié Moreno, M. R., Sarantinopoulos, P., Tsakalidou, E., & De Vuyst, L. (2006). The role and application of enterococci in food and health. International Journal of Food Microbiology, 106, 1–24.PubMedCrossRefGoogle Scholar
  82. Franz, C. M. A. P., Huch, M., Abriouel, H., Holzapfel, W., & Gálvez, A. (2011). Enterococci as probiotics and their implications in food safety. International Journal of Food Microbiology, 151, 125–140.PubMedCrossRefGoogle Scholar
  83. Geeraerts, W., Pothakos, V., De Vuyst, L., & Leroy, F. (2017). Diversity of the dominant bacterial species on sliced cooked pork products at expiration date in the Belgian retail. Food Microbiology, 65, 236–243.PubMedCrossRefGoogle Scholar
  84. Gerber, P. J., Mottet, A., Opio, C. I., Falcucci, A., & Teillard, F. (2015). Environmental impacts of beef production: Review of challenges and perspectives for durability. Meat Science, 109, 2–12.PubMedCrossRefGoogle Scholar
  85. Greppi, A., Ferrocino, I., La Storia, A., Rantsiou, K., Ercolini, D., & Cocolin, L. (2015). Monitoring of the microbiota of fermented sausages by culture independent rRNA-based approaches. International Journal of Food Microbiology, 212, 65–75.CrossRefGoogle Scholar
  86. Guran, H. S., Vural, A., & Erkan, M. E. (2014). The prevalence and molecular typing of Clostridium perfringens in ground beef and sheep meats. Journal für Verbraucherschutz und Lebensmittelsicherheit, 9, 121–128.CrossRefGoogle Scholar
  87. Hammes, W. P., & Hertel, C. (1998). New developments in meat starter cultures. Meat Science, 49, S125–S138.CrossRefGoogle Scholar
  88. Han, Q., Kong, B., Chen, Q., Sun, F., & Zhang, H. (2017). In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics. Journal of Functional Foods, 32, 391–400.CrossRefGoogle Scholar
  89. Harada, T., Dang, V. C., Nguyen, D. P., Nguyen, T. A. D., Sakamoto, M., Ohkuma, M., Matooka, D., Nakamura, S., Uchida, K., Jinnai, M., Yonogi, S., Kawahara, R., Kawai, T., Kumeda, Y., & Yamamoto, Y. (2016). Enterococcus saigonensis sp. nov., isolated from retail chicken meat and liver. International Journal of Systematic and Evolutionary Microbiology, 66, 3779–3785.PubMedCrossRefGoogle Scholar
  90. Haugaard, P., Hansen, F., Jensen, M., & Grunert, K. G. (2014). Consumer attitudes toward new technique for preserving organic meat using herbs and berries. Meat Science, 96, 126–135.PubMedCrossRefGoogle Scholar
  91. Héquet, A., Laffitte, V., Simon, L., De Sousa-Caetano, D., Thomas, C., Fremaux, C., & Berjeaud, J. M. (2007). Characterization of new bacteriocinogenic lactic acid bacteria isolated using a medium designed to simulate inhibition of Listeria by Lactobacillus sakei 2512 on meat. International Journal of Food Microbiology, 113, 67–74.PubMedCrossRefGoogle Scholar
  92. Hoffman, L. C., & Dicks, L. M. T. (2011). Preliminary results indicating game meat is more resistant to microbiological spoilage. In P. Paulsen, A. Bauer, M. Vodnansky, R. Winkelmayer, & F. J. M. Smulders (Eds.), Game meat hygiene in focus: Microbiology, epidemiology, risk analysis and quality assurance (pp. 137–139). Wageningen, The Netherlands: Wageningen Academic Publishers.CrossRefGoogle Scholar
  93. Holko, I., Hrabe, J., Salakova, A., & Rada, V. (2013). The substitution of a traditional starter culture in mutton fermented sausages by Lactobacillus acidophilus and Bifidobacterium animalis. Meat Science, 94, 275–279.PubMedCrossRefGoogle Scholar
  94. Höll, L., Behr, J., & Vogel, R. F. (2016). Identification and growth dynamics of meat spoilage microorganisms in modified atmosphere packaged poultry meat by MALDI-TOF MS. Food Microbiology, 60, 84–91.PubMedCrossRefGoogle Scholar
  95. Hospital, X. F., Hierro, E., Stringer, S., & Fernández, M. (2016). A study on the toxigenesis by Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages. International Journal of Food Microbiology, 218, 66–70.PubMedCrossRefGoogle Scholar
  96. Huang, H., Brooks, B. W., Lowman, R., & Carrillo, C. D. (2015). Campylobacter species in animal, food, and environmental sources, and relevant testing programs in Canada. Canadian Journal of Microbiology, 61, 701–721.PubMedCrossRefGoogle Scholar
  97. Huang, Y., Ye, K., Yu, K., Wang, K., & Zhou, G. (2016). The potential influence of two Enterococcus faecium on the growth of Listeria monocytogenes. Food Control, 67, 18–24.CrossRefGoogle Scholar
  98. Hue, O., Allain, V., Laisney, M. J., Le Bouquin, S., Lalande, F., Petetin, I., Rouxel, S., Quesne, S., Gloaguen, P. Y., Picherot, M., Santolini, J., Bougeard, S., Salvat, G., & Chemaly, M. (2011). Campylobacter contamination of broiler caeca and carcasses at the slaughterhouse and correlation with Salmonella contamination. Food Microbiology, 28, 862–868.PubMedCrossRefGoogle Scholar
  99. Hugas, M., Garriga, M., & Aymerich, M. T. (2003). Functionality of enterococci in meat products. International Journal of Food Microbiology, 88, 223–233.PubMedCrossRefGoogle Scholar
  100. Hultman, J., Rahkila, R., Ali, J., Rousu, J., & Björkroth, K. J. (2015). Meat processing plant microbiome and contamination patterns of cold-tolerant bacteria causing food safety and spoilage risks in the manufacture of vacuum-packaged cooked sausages. Applied and Environmental Microbiology, 81, 7088–7097.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Iacumin, L., Chiesa, L., Boscolo, D., Manzano, M., Cantoni, C., Orlic, S., & Comi, G. (2009). Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiology, 26, 65–70.PubMedCrossRefGoogle Scholar
  102. Jääskeläinen, E., Johansson, P., Kostiainen, O., Nieminen, T., Schmidt, G., Somervuo, P., Mohsina, M., Vanninen, P., Auvinen, P., & Björkroth, J. (2013). Significance of heme-based respiration in meat spoilage caused by Leuconostoc gasicomitatum. Applied and Environmental Microbiology, 79, 1078–1085.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Jacome, S. L., Fonseca, S., Pinheiro, R., Todorov, S. D., Noronha, L., Silva, J., Gomes, A., Pintado, M., Morais, A. M. M. B., Teixeira, P., & Vaz-Velho, M. (2014). Effect of lactic acid bacteria on quality and safety of ready-to-eat sliced cured/smoked meat products. Chemical Engineering Transactions, 38, 403–408.Google Scholar
  104. Jacquot, A., Neveu, D., Aujoulat, F., Mercier, G., Marchandin, H., Jumas-Bilak, E., & Picaud, J. C. (2011). Dynamics and clinical evolution of bacterial gut microflora in extremely premature patients. Journal of Pediatrics, 158, 390–396.PubMedCrossRefGoogle Scholar
  105. Jafari, M., Mortazavian, A. M., Hosseini, H., Safaei, F., Mousavi Khaneghah, A., & Sant’Ana, A. S. (2017). Probiotic Bacillus: Fate during sausage processing and storage and influence of different culturing conditions on recovery of their spores. Food Research International, 95, 46–51.PubMedCrossRefGoogle Scholar
  106. Janssens, M., Myter, N., De Vuyst, L., & Leroy, F. (2012). Species diversity and metabolic impact of the microbiota are low in spontaneously acidified Belgian sausages with an added starter culture of Staphylococcus carnosus. Food Microbiology, 29, 167–177.PubMedCrossRefGoogle Scholar
  107. Janssens, M., Myter, N., De Vuyst, L., & Leroy, F. (2013). Community dynamics of coagulase-negative staphylococci during spontaneous artisan-type meat fermentations differ between smoking and moulding treatments. International Journal of Food Microbiology, 166, 168–175.PubMedCrossRefGoogle Scholar
  108. Jayamanne, V. S., & Adams, M. R. (2006). Determination of survival, identity and stress resistance of probiotic bifidobacteria in bio-yoghurts. Letters in Applied Microbiology, 42, 189–194.PubMedCrossRefGoogle Scholar
  109. Jiang, Y., Gao, F., Xu, X. L., Su, Y., Ye, K. P., & Zhou, G. H. (2010). Changes in the bacterial communities of vacuum-packaged pork during chilled storage analyzed by PCR–DGGE. Meat Science, 86, 889–895.PubMedCrossRefGoogle Scholar
  110. Jimenez, E., Delgado, S., Maldonado, A., Arroyo, R., Albújar, M., García, N., Jariod, M., Fernández, L., Gómez, A., & Rodríguez, J. M. (2008). Staphylococcus epidermidis: A differential trait of the fecal microbiota of breast-fed infants. BMC Microbiology, 8, 143.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Johansson, P., Paulin, L., Säde, E., Salovuori, N., Alatalo, E. R., Björkroth, K. J., & Auvinen, P. (2011). Genome sequence of a food spoilage lactic acid bacterium, Leuconostoc gasicomitatum LMG 18811T, in association with specific spoilage reactions. Applied and Environmental Microbiology, 77, 4344–4351.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Jones, R. J. (2004). Observations on the succession dynamics of lactic acid bacteria populations in chill-stored vacuum-packaged beef. International Journal of Food Microbiology, 90, 273–282.PubMedCrossRefGoogle Scholar
  113. Josephs-Spaulding, J., Beeler, E., & Singh, O. V. (2016). Human microbiome versus food-borne pathogens: Friend or foe. Applied Microbiology and Biotechnology, 100, 4845–4863.PubMedCrossRefGoogle Scholar
  114. Kang, D. H., Koohmaraie, M., & Siragus, G. R. (2001). Application of multiple antimicrobial interventions for microbial decontamination of commercial beef trim. Journal of Food Protection, 64, 168–171.PubMedCrossRefGoogle Scholar
  115. Klingberg, T. D., & Budde, B. B. (2006). The survival and persistence in the human gastrointestinal tract of five potential probiotic lactobacilli consumed as freeze-dried cultures or as probiotic sausage. International Journal of Food Microbiology, 109, 157–159.PubMedCrossRefGoogle Scholar
  116. Klingberg, T. D., Axelsson, L., Naterstad, K., Elsser, D., & Budde, B. B. (2005). Identification of potential probiotic starter cultures for Scandinavian-type fermented sausages. International Journal of Food Microbiology, 105, 419–431.PubMedCrossRefGoogle Scholar
  117. Koutsoumanis, K., Stamatiou, A., Skandamis, P., & Nychas, G.-J. E. (2006). Development of a microbial model for the combined effect of temperature and pH on spoilage of ground meat, and validation of the model under dynamic temperature conditions. Applied and Environmental Microbiology, 72, 124–134.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Kudirkienė, E., Bunevičienė, J., Brøndsted, L., Ingmer, H., Olsen, J. E., & Malakauskas, M. (2011). Evidence of broiler meat contamination with post-disinfection strains of Campylobacter jejuni from slaughterhouse. International Journal of Food Microbiology, 145, 5116–5120.CrossRefGoogle Scholar
  119. Kumari, A., Catanzaro, R., & Marotta, F. (2011). Clinical importance of lactic acid bacteria: A short review. Acta Bio-medica, 82, 177–180.PubMedGoogle Scholar
  120. La Storia, A., Ferrocino, I., Torrieri, E., Di Monaco, R., Mauriello, G., Villani, F., & Ercolini, D. (2012). A combination of modified atmosphere and antimicrobial packaging to extend the shelf-life of beefsteaks stored at chill temperature. International Journal of Food Microbiology, 158, 186–194.PubMedCrossRefGoogle Scholar
  121. Laursen, B. G., Byrne, D. V., Kirkegaard, J. B., & Leisner, J. J. (2009). Lactic acid bacteria associated with a heat-processed pork product and sources of variation affecting chemical indices of spoilage and sensory characteristics. Journal of Applied Microbiology, 106, 543–553.PubMedCrossRefGoogle Scholar
  122. Lebert, I., Leroy, S., Giammarinaro, P., Lebert, A., Chacornac, J. P., Bover-Cid, S., Vidal, M., & Talon, R. (2007). Diversity of micro-organisms in environments and dry fermented sausages of French traditional small units. Meat Science, 76, 1112–1122.CrossRefGoogle Scholar
  123. Leisner, J. J., Laursen, B., Provost, H., Drider, D., & Dalgaard, P. (2007). Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiology Reviews, 31, 592–613.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Leitzmann, C. (2014). Vegetarian nutrition: Past, present, future. American Journal of Clinical Nutrition, 100, 496–502.CrossRefGoogle Scholar
  125. Lemay, M. J., Choquette, J., Delaquis, P. J., Gariépy, C., Rodrique, N., & Saucier, L. (2002). Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. International Journal of Food Microbiology, 78, 217–226.PubMedCrossRefGoogle Scholar
  126. Leroy, F., & Degreef, F. (2015). Convenient meat and meat products. Societal and technological issues. Appetite, 94, 40–46.PubMedCrossRefGoogle Scholar
  127. Leroy, F., & Praet, I. (2015). Meat traditions. The co-evolution of humans and meat. Appetite, 90, 200–211.PubMedCrossRefGoogle Scholar
  128. Leroy, F., & Praet, I. (2017). Animal killing and postdomestic meat production. Journal of Agricultural and Environmental Ethics, 30, 67–86.CrossRefGoogle Scholar
  129. Leroy, F., Verluyten, J., & De Vuyst, L. (2006). Functional meat starter cultures for improved sausage fermentation. International Journal of Food Microbiology, 106, 270–285.PubMedCrossRefGoogle Scholar
  130. Leroy, F., Vasilopoulos, C., Van Hemelryck, S., Falony, G., & De Vuyst, L. (2009). Volatile analysis of spoiled, artisan-type, modified-atmosphere-packaged cooked ham stored under different temperatures. Food Microbiology, 26, 94–102.PubMedCrossRefGoogle Scholar
  131. Leroy, S., Giammarinaro, P., Chacornac, J. P., Lebert, I., & Talon, R. (2010). Biodiversity of indigenous staphylococci of naturally fermented dry sausages and manufacturing environments of small-scale processing units. Food Microbiology, 27, 294–301.PubMedCrossRefGoogle Scholar
  132. Leroy, F., Geyzen, A., Janssens, M., De Vuyst, L., & Scholliers, P. (2013). Meat fermentation at the crossroads of innovation and tradition: A historical outlook. Trends in Food Science and Technology, 31, 130–137.CrossRefGoogle Scholar
  133. Leroy, F., Scholliers, P., & Amilien, V. (2015). Elements of innovation and tradition in meat fermentation: conflicts and synergies. International Journal of Food Microbiology, 212, 2–8.PubMedCrossRefGoogle Scholar
  134. Libera, J., Karwowska, M., Stasiak, D. M., & Dolatowski, Z. J. (2015). Microbiological and physicochemical properties of dry-cured neck inoculated with probiotic of Bifidobacterium animalis ssp. lactis BB-12. International Journal of Food Science and Technology, 50, 1560–1566.CrossRefGoogle Scholar
  135. Lingbeck, J. M., Cordero, P., O’Bryan, C. A., Johnson, M. G., Ricke, S. C., & Crandall, P. G. (2014). Functionality of liquid smoke as an all-natural antimicrobial in food preservation. Meat Science, 97, 197–206.PubMedCrossRefGoogle Scholar
  136. Lorenzo, J. M., & Gómez, M. (2012). Shelf life of fresh foal meat under MAP, overwrap and vacuum packaging conditions. Meat Science, 92, 610–618.PubMedCrossRefGoogle Scholar
  137. Lowry, P. D., & Gill, C. O. (1984). Mould growth on meat at freezing temperatures. International Journal of Refrigeration, 7, 133–136.CrossRefGoogle Scholar
  138. Lucquin, L., Zagorec, M., Champomier-Vergès, M., & Chaillou, S. (2012). Fingerprint of lactic acid bacteria population in beef carpaccio is influenced by storage process and seasonal changes. Food Microbiology, 29, 187–196.PubMedCrossRefGoogle Scholar
  139. Lytou, A. E., Panagou, E. Z., & Nychas, G.-J. E. (2017). Effect of different marinating conditions on the evolution of spoilage microbiota and metabolomic profile of chicken breast fillets. Food Microbiology, 66, 141–149.PubMedCrossRefGoogle Scholar
  140. Magistà, D., Susca, A., Ferrara, M., Logrieco, A. F., & Perrone, G. (2017). Penicillium species: Crossroad between quality and safety of cured meat production. Current Opinion in Food Science, 17, 36–40.CrossRefGoogle Scholar
  141. Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J., & Hutkins, R. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102.PubMedCrossRefGoogle Scholar
  142. Marin, C., Hernandez, A., & Lainez, M. (2009). Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poultry Science, 88, 424–431.PubMedCrossRefGoogle Scholar
  143. Martín, B., Garriga, M., Hugas, M., & Aymerich, T. (2005). Genetic diversity and safety aspects of enterococci from slightly fermented sausages. Journal of Applied Microbiology, 98, 1177–1190.PubMedCrossRefGoogle Scholar
  144. Martín, B., Garriga, M., Hugas, M., Bover-Cid, S., Veciana-Nogues, M. T., & Aymerich, T. (2006). Molecular, technological and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages. International Journal of Food Microbiology, 107, 148–158.PubMedCrossRefGoogle Scholar
  145. Martínez-Onandi, N., Castioni, A., San Martín, E., Rivas-Cañedo, A., Torriani, S., & Picon, A. (2017). Microbiota of high-pressure-processed Serrano ham investigated by culture-dependent and culture-independent methods. International Journal of Food Microbiology, 241, 298–307.PubMedCrossRefGoogle Scholar
  146. Matamoros, S., André, S., Hue, I., Prévost, H., & Pilet, M. P. (2010). Identification of lactic acid bacteria involved in the spoilage of pasteurized “foie gras” products. Meat Science, 85, 467–471.PubMedCrossRefGoogle Scholar
  147. Mauriello, G., Casaburi, A., Blaiotta, G., & Villani, F. (2004). Isolation and technological properties of coagulase negative staphylococci from fermented sausages of Southern Italy. Meat Science, 67, 149–158.PubMedCrossRefGoogle Scholar
  148. Mc Nulty, K., Soon, J. M., Wallace, C. A., & Nastasijevic, I. (2016). Antimicrobial resistance monitoring and surveillance in the meat chain: a report from five countries in the European Union and European Economic Area. Trends in Food Science and Technology, 58, 1–13.CrossRefGoogle Scholar
  149. Mendonça, R. C. S., Gouvea, D. M., Hungano, H. M., Sodre, A. F., & Querol-Simon, A. (2013). Dynamics of the yeasts flora in artisanal country style and industrial dry cured sausage. Food Control, 29, 143–148.CrossRefGoogle Scholar
  150. Metaxopoulos, J., Mataragas, M., & Drosinos, E. H. (2002). Microbial interaction in cooked cured meat products under vacuum or modified atmosphere at 4°C. Journal of Applied Microbiology, 93, 363–373.PubMedCrossRefGoogle Scholar
  151. Milios, K., Drosinos, E. H., & Zoiopoulos, P. E. (2014). Carcass decontamination methods in slaughterhouses: A review. Journal of the Hellenic Veterinarian Medical Society, 65, 65–78.CrossRefGoogle Scholar
  152. Morales, P. A., Aguirre, J. S., Troncoso, M. R., & Figueroa, G. O. (2016). Phenotypic and genotypic characterization of Pseudomonas spp. present in spoiled poultry fillets sold in retail settings. Food Science and Technology, 73, 609–614.Google Scholar
  153. Müller, A., Reichhardt, R., Fogarassy, G., Basse, R., Gibis, M., Weiss, J., Schmidt, H., & Weiss, A. (2016). Safety assessment of selected Staphylococcus carnosus strains with regard to their application as meat starter culture. Food Control, 66, 93–99.CrossRefGoogle Scholar
  154. Muthukumarasamy, P., & Holley, R. A. (2007). Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiology, 24, 82–88.PubMedCrossRefGoogle Scholar
  155. Nieminen, T. T., Vihavainen, E., Paloranta, A., Lehto, J., Paulin, L., Auvinen, P., Solsimaa, M., & Björkroth, K. J. (2011). Characterization of psychrotrophic bacterial communities in modified atmosphere-packed meat with terminal restriction fragment length polymorphism. International Journal of Food Microbiology, 144, 360–366.PubMedCrossRefGoogle Scholar
  156. Nieminen, T. T., Koskinen, K., Laine, P., Hultman, J., Säde, E., Paulin, L., Paloranta, A., Johansson, P., Björkroth, J., & Auvinen, P. (2012). Comparison of microbial communities in marinated and unmarinated broiler meat by metagenomics. International Journal of Food Microbiology, 157, 142–149.PubMedCrossRefGoogle Scholar
  157. Nieminen, T. T., Dalgaard, P., & Björkroth, J. (2016). Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork. International Journal of Food Microbiology, 218, 86–95.PubMedCrossRefGoogle Scholar
  158. Nogueira Ruiz, J., Montes Villanueva, N. D., Pavaro-Trindade, C. S., & Contreras-Castillo, C. J. (2014). Physicochemical, microbiological and sensory assessments of Italian salami sausages with probiotic potential. Scientia Argricola, 71, 204–211.CrossRefGoogle Scholar
  159. Núñez, F., Lara, M. S., Peromingo, B., Delgado, J., Sánchez-Montero, L., & Andrade, M. J. (2015). Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dry-fermented sausages. Food Microbiology, 46, 114–120.PubMedCrossRefGoogle Scholar
  160. Nyquist, O. L., McLeod, A., Brede, D. A., Snipen, L., Aakra, Å., & Nes, I. F. (2011). Comparative genomics of Lactobacillus sakei with emphasis on strains from meat. Molecular Genetics and Genomics, 285, 297–311.PubMedCrossRefGoogle Scholar
  161. O’Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Reports, 7, 688–693.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Oakley, B. B., Morales, C. A., Line, J., Berrang, M. E., Meinersmann, R. J., Tillman, G. E., Wise, M. G., Siragusa, G. R., Hiet, K. L., & Seal, B. S. (2013). The poultry-associated microbiome: Network analysis and farm-to-fork characterizations. PLoS One, 8, 1–11.CrossRefGoogle Scholar
  163. Olivares, M., Díaz-Ropero, M. P., Gómez, N., Sierra, S., Lara-Villoslada, F., Martín, R., Rodríguez, J. M., & Xaus, J. (2006). Dietary deprivation of fermented foods causes a fall in innate immune response. Lactic acid bacteria can counteract the immunological effect of this deprivation. Journal of Dairy Research, 73, 492–498.PubMedCrossRefGoogle Scholar
  164. Ortega, E., Abriouel, H., Lucas, R., & Galvez, A. (2010). Multiple roles of Staphylococcus aureus enterotoxins: Pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins, 2, 2117–2131.PubMedCrossRefGoogle Scholar
  165. Ortiz, S., López, V., Garriga, M., & Martínez-Suárez, J. V. (2014). Antilisterial effect of two bioprotective cultures in a model system of Iberian chorizo fermentation. International Journal of Food Science and Technology, 49, 753–758.CrossRefGoogle Scholar
  166. Papagianni, M., Ambrosiadis, I., & Filiousis, G. (2007). Mould growth on traditional Greek sausages and penicillin production by Penicillium isolates. Meat Science, 76, 653–657.PubMedCrossRefGoogle Scholar
  167. Patsias, A., Chouliara, I., Badeka, A., Savvaidis, I. N., & Kontominas, M. G. (2006). Shelf-life of a chilled precooked chicken product stored in air and under modified atmospheres: Microbiological, chemical, sensory attributes. Food Microbiology, 23, 423–429.PubMedCrossRefGoogle Scholar
  168. Patterson, M. P., Mckay, A. M., Connolly, M., & Linton, M. (2010). Effect of high pressure on the microbiological quality of cooked chicken during storage at normal and abuse refrigeration temperatures. Food Microbiology, 27, 266–273.PubMedCrossRefGoogle Scholar
  169. Pavelková, A., Kačániová, M., Horská, E., Rovná, K., Hleba, L., & Petrová, J. (2014). The effect of vacuum packaging, EDTA, oregano and thyme oils on the microbiological quality of chicken’s breast. Anaerobe, 29, 128–133.PubMedCrossRefGoogle Scholar
  170. Pennacchia, C., Ercolini, D., & Villani, F. (2011). Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiology, 28, 84–93.PubMedCrossRefGoogle Scholar
  171. Pidcock, K., Heard, G. M., & Henriksson, A. (2002). Application of nontraditional meat starter cultures in production of Hungarian salami. International Journal of Food Microbiology, 76, 75–81.PubMedCrossRefGoogle Scholar
  172. Piotrowska-Cyplik, A., Myszka, K., Czarny, J., Ratajczak, K., Kowalski, R., Bieanska-Marecik, R., Staninska-Pieta, J., Nowak, J., & Cryplik, P. (2017). Characterization of specific spoilage organisms (SSOs) in vacuum-packed ham by culture-plating techniques and MiSeq next-generation sequencing technologies. Journal of the Science of Food and Agriculture, 97, 689–668.CrossRefGoogle Scholar
  173. Plé, C., Breton, J., Daniel, C., & Foligné, B. (2015). Maintaining gut ecosystems for health: Are transitory food bugs stowaways or part of the crew? International Journal of Food Microbiology, 213, 139–143.PubMedCrossRefGoogle Scholar
  174. Pothakos, V., Snauwaert, C., De Vos, P., Huys, G., & Devlieghere, F. (2014). Psychrotrophic members of Leuconostoc gasicomitatum, Leuconostoc gelidum and Lactococcus piscium dominate at the end of shelf-life in packaged and chilled-stored food products in Belgium. Food Microbiology, 39, 61–67.PubMedCrossRefGoogle Scholar
  175. Pothakos, V., Devlieghere, F., Villani, F., Björkroth, J., & Ercolini, D. (2015). Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Science, 109, 66–74.PubMedCrossRefGoogle Scholar
  176. Quercia, S., Candela, M., Giuliani, C., Turroni, S., Louiselli, D., Rampelli, S., Brigidi, P., Franceschi, C., Bacalini, M. G., Garagnani, P., & Pirazzini, C. (2014). From lifetime to evolution: Timescales of human gut microbiota adaptation. Frontiers in Microbiology, 5, 587.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Raeisi, M., Tabaraei, A., Hashemi, M., & Behnampour, N. (2016). Effect of sodium alginate coating incorporated with nisin, Cinnamomum zeylanicum, and rosemary essential oils on microbial quality of chicken meat and fate of Listeria monocytogenes during refrigeration. International Journal of Food Microbiology, 238, 139–145.PubMedCrossRefGoogle Scholar
  178. Rahkila, R., Johansson, P., Säde, E., & Björkroth, J. (2011). Identification of enterococci from broiler products and a broiler processing plant and description of Enterococcus viikkiensis sp. nov. Applied and Environmental Microbiology, 77, 1196–1203.PubMedCrossRefGoogle Scholar
  179. Rantsiou, K., Urso, R., Iacumin, L., Cantoni, C., Cattaneo, P., Comi, G., & Cocolin, L. (2005). Culture-dependent and -independent methods to investigate the microbial ecology of Italian fermented sausages. Applied and Environmental Microbiology, 84, 1043–1049.Google Scholar
  180. Ravyts, F., De Vuyst, L., & Leroy, F. (2012). Bacterial diversity and functionalities in food fermentations. Engineering in Life Sciences, 12, 356–367.CrossRefGoogle Scholar
  181. Remenant, B., Jaffrès, E., Dousset, X., Pilet, M. F., & Zagorec, M. (2015). Bacterial spoilers of food: Behavior, fitness and functional properties. Food Microbiology, 45, 45–53.PubMedCrossRefGoogle Scholar
  182. Rimaux, T., Vrancken, G., Vuylsteke, B., De Vuyst, L., & Leroy, F. (2011). The pentose moiety of adenosine and inosine is an important energy source for the fermented-meat starter culture Lactobacillus sakei CTC 494. Applied and Environmental Microbiology, 77, 6539–6550.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Rimaux, T., Rivière, A., Illeghems, K., Weckx, S., De Vuyst, L., & Leroy, F. (2012). Expression of the arginine deiminase pathway genes in Lactobacillus sakei is strain dependent and is affected by environmental pH. Applied and Environmental Microbiology, 78, 4874–4883.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Roseiro, L. C., Gomes, A., & Santos, C. (2011). Influence of processing in the prevalence of polycyclic aromatic hydrocarbons in a Portuguese traditional meat product. Food and Chemical Toxicology, 49, 1340–1345.PubMedCrossRefGoogle Scholar
  185. Rosenstein, R., & Götz, F. (2013). What distinguishes highly pathogenic staphylococci from medium- and non-pathogenic? In U. Dobrindt, J. Hacker, & C. Svanborg (Eds.), Between pathogenicity and commensalism. Current topics in microbiology and immunology (Vol. 358, pp. 33–89). Berlin, Germany: Springer.CrossRefGoogle Scholar
  186. Rouger, A. (2017). Déscription et comportement des communautés bactériennes de la viande de poulet conserve sous atmosphère protectrice. PhD Thesis. Université Bretagne Loire, Rennes, France.Google Scholar
  187. Rouger, A., Remenant, B., Prévost, H., & Zagorec, M. (2017). A method to isolate bacterial communities and characterize ecosystems from food products: Validation and utilization in a reproducible chicken meat model. International Journal of Food Microbiology, 247, 38–47.PubMedCrossRefGoogle Scholar
  188. Rouhi, M., Sohrabvandi, S., & Mortazavian, M. (2013). Probiotic fermented sausage: Viability of probiotic microorganisms and sensory characteristics. Critical Reviews in Food Science and Nutrition, 53, 331–348.PubMedCrossRefGoogle Scholar
  189. Rubio, R., Aymerich, T., Bover-Cid, S., Guàrdia, M. D., Arnau, J., & Garriga, M. (2013a). Probiotic strains Lactobacillus plantarum 299V and Lactobacillus rhamnosus GG as starter cultures for fermented sausages. Food Science and Technology, 54, 51–56.Google Scholar
  190. Rubio, R., Bover-Cid, S., Martin, B., Garriga, M., & Aymerich, T. (2013b). Assessment of safe enterococci as bioprotective cultures in low-acid fermented sausages combined with high hydrostatic pressure. Food Microbiology, 33, 158–165.PubMedCrossRefGoogle Scholar
  191. Rubio, R., Jofré, A., Aymerich, T., Guàrdia, M. D., & Garriga, M. (2014a). Nutritionally enhanced fermented sausages as a vehicle for potential probiotic lactobacilli delivery. Meat Science, 96, 937–942.PubMedCrossRefGoogle Scholar
  192. Rubio, R., Jofré, A., Martín, B., Aymerich, T., & Garriga, M. (2014b). Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiology, 38, 303–311.PubMedCrossRefGoogle Scholar
  193. Rubio, R., Martín, B., Aymerich, T., & Garriga, M. (2014c). The potential probiotic Lactobacillus rhamnosus CTC1679 survives the passage through the gastrointestinal tract and its use as starter cultures results in safe nutritionally enhanced fermented sausages. International Journal of Food Microbiology, 186, 55–60.PubMedCrossRefGoogle Scholar
  194. Ruiz, J. N., Villanueva, N. D. M., Favaro-Trindade, C. S., & Contreras-Castillo, C. J. (2014). Physicochemical, microbiological and sensory assessments of Italian salami sausages with probiotic potential. Scientia Agricola, 71, 204–211.CrossRefGoogle Scholar
  195. Ruiz-Moyano, S., Martír, A., Benito, M. J., Hernández, A., Casquete, R., Serradilla, M. J., & Córdoba, M. G. (2009). Safety and functional aspects of pre-selected lactobacilli for probiotic use in Iberian dry-fermented sausages. Meat Science, 83, 460–467.PubMedCrossRefGoogle Scholar
  196. Ruiz-Moyano, S., Martír, A., Benito, M. J., Hernández, A., Casquete, R., Serradilla, M. J., & Córdoba, M. G. (2010). Safety and functional aspects of pre-selected pediococci for probiotic use in Iberian dry-fermented sausages. International Journal of Food Science and Technology, 45, 1138–1145.CrossRefGoogle Scholar
  197. Ruiz-Moyano, S., Martír, A., Benito, M. J., Hernández, A., Casquete, R., & Córdoba, M. G. (2011). Application of Lactobacillus fermentum HL57 and Pediococcus acidilactici SP979 as potential probiotics in the manufacture of traditional Iberian dry-fermented sausages. Food Microbiology, 28, 839–847.PubMedCrossRefGoogle Scholar
  198. Säde, E., Murros, A., & Björkroth, J. (2013). Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiology, 34, 252–258.PubMedCrossRefGoogle Scholar
  199. Säde, E., Lassila, E., & Björkroth, J. (2016). Lactic acid bacteria in dried vegetables and spices. Food Microbiology, 53, 110–114.PubMedCrossRefGoogle Scholar
  200. Salminen, S., Endo, A., Isolauri, E., & Scalabrin, D. (2015). Early gut colonization with lactobacilli and Staphylococcus in infants: The hygiene hypothesis extended. Journal of Pediatric Gastroenterology and Nutrition, 62, 80–86.CrossRefGoogle Scholar
  201. Samelis, J., Kakouri, A., & Rementzis, J. (2000). The spoilage microflora of cured, cooked turkey breasts prepared commercially with or without smoking. International Journal of Food Microbiology, 56, 133–143.PubMedCrossRefGoogle Scholar
  202. Sánchez Mainar, M., Xhaferi, R., Samapundo, S., Devlieghere, F., & Leroy, F. (2016). Opportunities and limitations for the production of safe fermented meats without nitrate and nitrite using an antibacterial Staphylococcus sciuri starter culture. Food Control, 69, 267–274.CrossRefGoogle Scholar
  203. Sánchez Mainar, M., Stavropoulou, D. A., & Leroy, F. (2017). Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: A review. International Journal of Food Microbiology, 247, 24–37.PubMedCrossRefGoogle Scholar
  204. Sanz, Y., Sánchez, E., Marzotto, M., Calabuig, M., Torriani, S., & Dellaglio, F. (2007). Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunology and Medical Microbiology, 51, 562–568.PubMedCrossRefGoogle Scholar
  205. Schirmer, B. C., Heir, E., & Langsrud, S. (2009). Characterization of the bacterial spoilage flora in marinated pork products. Journal of Applied Microbiology, 106, 1364–5072.CrossRefGoogle Scholar
  206. Selgas, M. D., & García, M. L. (2014). Yeasts. In F. Toldrá (Ed.), Handbook of fermented meat and poultry (2nd ed., pp. 139–146). Hoboken, NJ: Wiley-Blackwell.Google Scholar
  207. Sharma, S., Thind, S. S., & Kaur, A. (2015). In vitro meat production system: Why and how? Journal of Food Science and Technology, 52, 7599–7607.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Shori, A. B. (2015). The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage. Biocatalysis and Agricultural Biotechnology, 4, 423–431.CrossRefGoogle Scholar
  209. Šimko, P. (2005). Factors affecting elimination of polycyclic aromatic hydrocarbons from smoked meat foods and liquid smoke flavorings. Molecular Nutrition and Food Research, 49, 637–647.PubMedCrossRefGoogle Scholar
  210. Simoncini, N., Rotelli, D., Virgili, R., & Quintavalla, S. (2007). Dynamics and characterization of yeasts during ripening of typical Italian dry-cured ham. Food Microbiology, 24, 577–584.PubMedCrossRefGoogle Scholar
  211. Sivertsvik, M., Rosnes, J. T., & Jeksrud, W. K. (2004). Solubility and absorption rate of carbon dioxide into non-respiring foods. Part 2. Raw fish fillets. Journal of Food Engineering, 63, 451–458.CrossRefGoogle Scholar
  212. Škaljac, S., Petrović, L., Tasić, T., Ikonić, P., Jokanović, M., Tomović, V., Džinić, N., Šojić, B., Tjapkin, A., & Škrbić, B. (2014). Influence of smoking in traditional and industrial conditions on polycyclic aromatic hydrocarbons content in dry fermented sausages (Petrovská klobása) from Serbia. Food Control, 40, 12–18.CrossRefGoogle Scholar
  213. Smil, V. (2013). Should we eat meat? Evolution and consequences of modern carnivory. Chichester, UK: Wiley-Blackwell.CrossRefGoogle Scholar
  214. Smolander, M., Alakomi, H., Ritvanen, T., Vainionpää, J., & Ahvenainen, R. (2004). Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions. A. Time-temperature indicators as quality-indicating tools. Food Control, 15, 217–229.CrossRefGoogle Scholar
  215. Sparo, M., Nuñez, G. G., Castro, M., Calcagno, M. L., Allende, M. A. G., & Ceci, M. (2008). Characteristics of an environmental strain, Enterococcus faecalis CECT7121, and its effects as additive on craft dry-fermented sausages. Food Microbiology, 25, 607–615.PubMedCrossRefGoogle Scholar
  216. Sparo, M. D., Confalonieri, A., Urbizu, L., Ceci, M., & Bruni, S. F. (2013). Bio-preservation of ground beef meat by Enterococcus faecalis CECT7121. Brazilian Journal of Microbiology, 44, 43–49.PubMedPubMedCentralCrossRefGoogle Scholar
  217. Srey, S., Jahid, I. K., & Ha, S. D. (2013). Biofilm formation in food industries: A food safety concern. Food Control, 31, 572–585.CrossRefGoogle Scholar
  218. Stella, S., Soncini, G., Ziino, G., Panebianco, A., Pedonese, F., Nuvoloni, R., Giannatale, E. D., Colavita, G., Alberghini, L., & Giaccone, V. (2017). Prevalence and quantification of thermophilic Campylobacter spp. in Italian retail poultry meat: Analysis of influencing factors. Food Microbiology, 62, 232–238.PubMedCrossRefGoogle Scholar
  219. Stellato, G., La Storia, A., De Flippis, F., Borriello, G., Villani, F., & Ercolini, D. (2016). Overlap of spoilage-associated microbiota between meat and the meat processing environment in small-scale and large-scale retail distributions. Applied and Environmental Microbiology, 82, 4045–4054.PubMedPubMedCentralCrossRefGoogle Scholar
  220. Stoops, J., Ruyters, S., Busschaert, P., Spaepen, R., Verreth, C., Claes, J., Lievens, B., & Van Campenhout, L. (2015). Bacterial community dynamics during cold storage of minced meat packaged under modified atmosphere and supplemented with different preservatives. Food Microbiology, 48, 192–199.PubMedCrossRefGoogle Scholar
  221. Sunesen, L. O., & Stahnke, L. H. (2003). Mould starter cultures for dry sausages-selection, application and effects. Meat Science, 65, 935–948.PubMedCrossRefGoogle Scholar
  222. Toldrá, F. (2014). Handbook of fermented meat and poultry (2nd ed.). Hoboken, NJ: Wiley-Blackwell.Google Scholar
  223. Toldrá, F. (2017). Lawrie’s meat science. Duxford, UK: Woodhead Publishing.Google Scholar
  224. Tremonte, P., Sorrentino, E., Pannella, G., Tipaldi, L., Sturchio, M., Masucci, A., Maiuro, L., Coppola, R., & Succi, M. (2017). Detection of different microenvironments and Lactobacillus sakei biotypes in Ventricina, a traditional fermented sausage from Central Italy. International Journal of Food Microbiology, 242, 132–140.PubMedCrossRefGoogle Scholar
  225. Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241.CrossRefGoogle Scholar
  226. Troy, D. J., & Kery, J. P. (2010). Consumer perception and the role of science in the meat industry. Meat Science, 86, 214–226.PubMedCrossRefGoogle Scholar
  227. Urso, R., Rantsiou, K., Cantoni, C., Comi, G., & Cocolin, L. (2006). Technological characterization of a bacteriocin-producing Lactobacillus sakei and its use in fermented sausages production. International Journal of Food Microbiology, 110, 232–239.PubMedCrossRefGoogle Scholar
  228. Vasilopoulos, C., Ravyts, F., De Maere, H., De Mey, E., Paelinck, H., De Vuyst, L., & Leroy, F. (2008). Evaluation of the spoilage lactic acid bacteria in modified-atmosphere-packaged artisan-type cooked ham using culture-dependent and culture-independent approaches. Journal of Applied Microbiology, 104, 1341–1353.PubMedCrossRefGoogle Scholar
  229. Vasilopoulos, C., De Maere, H., De Mey, E., Paelinck, H., De Vuyst, L., & Leroy, F. (2010a). Technology-induced selection towards the spoilage microbiota of artisan-type cooked ham packed under modified atmosphere. Food Microbiology, 27, 77–84.PubMedCrossRefGoogle Scholar
  230. Vasilopoulos, C., De Mey, E., Pevulf, L., Paelinck, H., De Smedt, A., Vandendriessche, F., De Vuyst, L., & Leroy, F. (2010b). Interactions between bacterial isolates from modified-atmosphere-packaged artisan-type cooked ham in view of the development of a bioprotective culture. Food Microbiology, 27, 1086–1094.PubMedCrossRefGoogle Scholar
  231. Vasilopoulos, C., De Vuyst, L., & Leroy, F. (2015). Shelf-life reduction as an emerging problem in cooked hams underlines the need for improved preservation strategies. Critical Reviews in Food Science and Nutrition, 55, 1425–1443.PubMedCrossRefGoogle Scholar
  232. Verbeke, W. (2015). Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Quality and Preference, 39, 147–155.CrossRefGoogle Scholar
  233. Vermeiren, L., Devlieghere, F., Vandekinderen, I., & Debevere, J. (2006). The interaction of the non-bacteriocinogenic Lactobacillus sakei 10A and lactocin S producing Lactobacillus sakei 148 towards Listeria monocytogenes on a model cooked ham. Food Microbiology, 23, 511–518.PubMedCrossRefGoogle Scholar
  234. Vihavainen, E. J., & Björkroth, K. J. (2007). Spoilage of value-added, high-oxygen modified-atmosphere packaged raw beef steaks by Leuconostoc gasicomitatum and Leuconostoc gelidum. International Journal of Food Microbiology, 119, 340–345.PubMedCrossRefGoogle Scholar
  235. Villani, F., Casaburi, A., Pennacchia, C., Filosa, L., Russo, F., & Ercolini, D. (2007). Microbial ecology of the Soppressata of Vallo di Diano, a traditional dry fermented sausage from Southern Italy, and in vitro and in situ selection of autochthonous starter cultures. Applied and Environmental Microbiology, 73, 5453–5463.PubMedPubMedCentralCrossRefGoogle Scholar
  236. Virgili, R., Simoncini, N., Roscani, T., Leggierei, M. C., Formenti, S., & Battilani, P. (2012). Biocontrol of Penicillium nordicum growth and ochratoxin A production by native yeasts of dry cured ham. Toxins, 4, 68–82.PubMedPubMedCentralCrossRefGoogle Scholar
  237. Vranken, L., Avermaete, T., Petalios, D., & Mathijs, E. (2014). Curbing global meat consumption. Emerging evidence of a second nutrition transition. Environmental Science and Policy, 39, 95–106.CrossRefGoogle Scholar
  238. Walter, J., Hertel, C., Tannock, G. W., Lis, C. M., Munro, K., & Hammes, W. P. (2001). Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 67, 2578–2585.PubMedPubMedCentralCrossRefGoogle Scholar
  239. Wang, X., Lin, X., Ouyang, Y. Y., Liu, J., Zhao, G., Pan, A., & Hu, F. B. (2015). Red and processed meat consumption and mortality: Dose-response meta-analysis of prospective cohort studies. Public Health Nutrition, 19, 893–905.PubMedCrossRefGoogle Scholar
  240. Wang, G. J., Wang, H. H., Han, Y. W., Xing, T., Ye, K. P., Xu, X. L., & Zhou, G. H. (2017). Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiology, 63, 139–146.PubMedCrossRefGoogle Scholar
  241. Wójciak, K. M., Libera, J., Stasiak, D. M., & Kolozyn-krajewska, D. (2016). Technological aspect of Lactobacillus acidophilus Bauer, Bifidobacterium animalis BB-12 and Lactobacillus rhamnosus LOCK900 use in dry-fermented pork neck and sausage. Journal of Food Processing and Preservation, 41, 1–9.Google Scholar
  242. Yalcin, S., Nizamlioclu, M., & Gurbuz, U. (2001). Fecal coliform contamination of beef carcasses during the slaughtering process. Journal of Food Safety, 21, 225–231.CrossRefGoogle Scholar
  243. Zhang, H., Kong, B., Xiong, Y. L., & Sun, X. (2009). Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4°C. Meat Science, 81, 686–692.PubMedCrossRefGoogle Scholar
  244. Zhang, C., Derrien, M., Levenez, F., Brazeilles, R., Ballal, S. A., Kim, J., Degivry, M. C., Quéré, G., Carault, P., van Hylckama Vlieg, J. E. T., Garrett, W. S., Doré, J., & Veiga, P. (2016). Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. The ISME Journal, 10, 2235–2245.PubMedPubMedCentralCrossRefGoogle Scholar
  245. Zhong, L., Zhang, X., & Covasa, M. (2014). Emerging roles of lactic acid bacteria in protection against colorectal cancer. World Journal of Gastroenterology, 20, 7878–7886.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wim Geeraerts
    • 1
  • Despoina Angeliki Stavropoulou
    • 1
  • Luc De Vuyst
    • 1
  • Frédéric Leroy
    • 1
    Email author
  1. 1.Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations