Meat and Meat Products
Abstract
Meat is an important foodstuff, both from a nutritional and economic standpoint, available under a wide variety of raw and processed variants, including cooked, dry-cured, fermented, and smoked products. This chapter outlines the microbial diversity of meat and different meat products. Considerable microbial heterogeneity is found when comparing between meat types and their derived products, which is largely to be ascribed to variability on the level of the substrates, ingredients, and recipes, the processing conditions, and the storage methods. Upon consumption, the microorganisms that are present within the meat matrix enter the human gastrointestinal system and potentially interact with the gut microbiota. Whether they thus play a role in health and disease still needs to be established.
Keywords
Meat microbiome Raw meat microbiome Red meat microbiome Poultry microbiome Meat fermented productsNotes
Acknowledgements
The authors acknowledge financial support of the Research Council of the Vrije Universiteit Brussel (SRP7 and IOF342 projects, and in particular the HOA21 project ‘Artisan quality of fermented foods: myth, reality, perceptions, and constructions’ and the Interdisciplinary Research Program IRP2 ‘Food quality, safety, and trust since 1950: societal controversy and biotechnological challenges’), and the Hercules Foundation (projects UABR 09/004 and UAB 13/002).
References
- Ahmed, J., Mulla, M., & Arfat, Y. A. (2017). Application of high-pressure processing and polylactide/cinnamon oil packaging on chicken sample for inactivation and inhibition of Listeria monocytogenes and Salmonella Typhimurium, and post-processing film properties. Food Control, 78, 160–168.CrossRefGoogle Scholar
- Albano, H., van Reenen, C. A., Todorov, S. D., Cruz, D., Fraga, L., Hogg, T., Dicks, L. M. T., & Teixeira, P. (2009). Phenotypic and genetic heterogeneity of lactic acid bacteria isolated from “Alheira”, a traditional fermented sausage produced in Portugal. Meat Science, 82, 389–398.PubMedCrossRefGoogle Scholar
- Álvarez-Astorga, M., Capita, R., Alonso-Calleja, C., & Capita, R. (2002). Microbiological quality of retail chicken by-products in Spain. Meat Science, 62, 45–50.PubMedCrossRefGoogle Scholar
- Ammor, S., Rachman, C., Chaillou, S., Prévost, H., Dousset, X., Zagorec, M., Dufour, E., & Chevallier, I. (2005). Phenotypic and genotypic identification of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages. Food Microbiology, 22, 373–382.CrossRefGoogle Scholar
- Andrade, M. J., Rodríguez, M., Casado, E., & Córdoba, J. J. (2010). Efficiency of mitochondrial DNA restriction analysis and RAPD-PCR to characterize yeasts growing on dry-cured Iberian ham at the different geographic areas of ripening. Meat Science, 84, 377–383.PubMedCrossRefGoogle Scholar
- Aquilanti, L., Garofalo, C., Osimani, A., Silvestri, G., Vignaroll, C., & Clementi, F. (2007). Isolation and molecular characterization of antibiotic-resistant lactic acid bacteria from poultry and swine meat products. Journal of Food Protection, 70, 557–565.PubMedCrossRefGoogle Scholar
- Aquilanti, L., Garofalo, C., Osimani, A., & Clementi, F. (2016). Ecology of lactic acid bacteria and coagulase-negative cocci in fermented dry sausages manufactured in Italy and other Mediterranean countries: An overview. International Food Research Journal, 23, 429–445.Google Scholar
- Arnold, J. W. (2007). Bacterial contamination on rubber picker fingers before, during, and after processing. Poultry Science, 86, 2671–2675.PubMedCrossRefGoogle Scholar
- Arvanitoyannis, I. S., & Stratakos, A. C. (2012). Application of modified atmosphere packaging and active/smart technologies to red meat and poultry: A review. Food Bioprocess Technology, 5, 1423–1446.CrossRefGoogle Scholar
- Asefa, D. T., Gjerde, R. O., Sidhu, M. S., Langsrud, S., Kure, C. F., Nesbakken, T., & Skaar, I. (2009a). Moulds contaminants on Norwegian dry-cured meat products. International Journal of Food Microbiology, 128, 435–439.PubMedCrossRefGoogle Scholar
- Asefa, D. T., Møretrø, T., Gjerde, R. O., Langsrud, S., Kure, C. F., Sidhu, M. S., Nesbakken, T., & Skaar, I. (2009b). Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products. International Journal of Food Microbiology, 133, 135–140.PubMedCrossRefGoogle Scholar
- Asefa, D. T., Kure, C. F., Gjerde, R. O., Omer, M. K., Langsrud, S., Nesbakken, T., & Skaar, A. (2010). Fungal growth pattern, sources and factors of mould contamination in a dry-cured meat production facility. International Journal of Food Microbiology, 140, 131–135.PubMedCrossRefGoogle Scholar
- Ashraf, R., & Shah, N. P. (2011). Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium ssp. in yogurt—A review. International Journal of Food Microbiology, 149, 194–208.PubMedCrossRefGoogle Scholar
- Audenaert, K., D’Haene, K., Messens, K., Ruyssen, T., Vandamme, P., & Huys, G. (2010). Diversity of lactic acid bacteria from modified atmosphere packaged sliced cooked meat products at sell-by date assessed by PCR-denaturing gradient gel electrophoresis. Food Microbiology, 27, 12–18.PubMedCrossRefGoogle Scholar
- Aymerich, T., Martín, B., Garriga, M., & Hugas, M. (2003). Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic staphylococci from artisanal low-acid sausages. Applied and Environmental Microbiology, 69, 4583–4594.PubMedPubMedCentralCrossRefGoogle Scholar
- Aymerich, T., Martín, B., Garriga, M., Vidal-Carou, M. C., Bover-Cid, S., & Hugas, M. (2006). Safety properties and molecular strain typing of lactic acid bacteria isolated from slightly fermented sausages. Journal of Applied Microbiology, 100, 40–49.PubMedCrossRefGoogle Scholar
- Balamatsia, C. C., Patsias, A., Kontominas, M. G., & Savvaidis, I. N. (2007). Possible role of volatile amines as quality-indicating metabolites in modified atmosphere-packaged chicken fillets: Correlation with microbiological and sensory attributes. Food Chemistry, 104, 1622–1628.CrossRefGoogle Scholar
- Ballester-Costa, C., Sendra, E., Fernández-López, L., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2017). Assessment of antioxidant and antibacterial properties on meat homogenates of essential oils obtained from four Thymus species achieved from organic growth. Foods, 6, 59.PubMedCentralCrossRefPubMedGoogle Scholar
- Barbosa, J., Borges, S., & Teixeira, P. (2014). Selection of potential probiotic Enterococcus faecium isolated from Portuguese fermented food. International Journal of Food Microbiology, 191, 144–148.PubMedCrossRefGoogle Scholar
- Bartkiene, E., Bartkevics, V., Mozuriene, E., Krungleviciute, V., Novoslavskij, A., Santini, A., Rozentale, I., Juodeikiene, G., & Cizeikiene, D. (2017). The impact of lactic acid bacteria with antimicrobial properties on biodegradation of polycyclic aromatic hydrocarbons and biogenic amines in cold smoked pork sausages. Food Control, 71, 285–292.CrossRefGoogle Scholar
- Becker, K., Heilmann, C., & Peters, G. (2014). Coagulase-negative staphylococci. Clinical Microbiology Reviews, 27, 870–926.PubMedPubMedCentralCrossRefGoogle Scholar
- Bell, R. G. (2001). Meat packaging: Protection, preservation and presentation. In Y. H. Hui, W. K. Nip, R. W. Rogers, & G. A. Young (Eds.), Meat science and applications (pp. 463–490). New York: Marcel Dekker.Google Scholar
- Bell, V., Ferrão, J., & Fernandes, T. (2017). Nutritional guidelines and fermented food frameworks. Foods, 6, 65.PubMedCentralCrossRefPubMedGoogle Scholar
- Belluco, S., Barco, L., Roccato, A., & Ricci, A. (2015). Variability of Escherichia coli and Enterobacteriaceae counts on pig carcasses: A systematic review. Food Control, 55, 115–126.CrossRefGoogle Scholar
- Benito, M. J., Martín, A., Aranda, E., Pérez-Nevado, F., Ruiz-Moyano, S., & Cordoba, M. G. (2007). Characterization and selection of autochthonous lactic acid bacteria isolated from traditional Iberian dry-fermented salchichón and chorizo sausages. Journal of Food Protection, 72, 193–201.Google Scholar
- Benson, A. K., David, J. R. D., Gilbreth, S. E., Smith, G., Nietfeldt, J., Legge, R., Kim, J., Sinha, R., Duncan, C. E., Ma, J., & Singh, I. (2014). Microbial successions are associated with changes in chemical profiles of a model refrigerated fresh pork sausage during an 80-day shelf life study. Applied and Environmental Microbiology, 80, 5178–5194.PubMedPubMedCentralCrossRefGoogle Scholar
- Björkroth, J., Ristiniemi, M., Vandamme, P., & Korkeala, H. (2005). Enterococcus species dominating in fresh modified-atmosphere-packaged, marinated broiler legs are overgrown by Carnobacterium and Lactobacillus species during storage at 6°C. International Journal of Food Microbiology, 97, 267–276.PubMedCrossRefGoogle Scholar
- Bomdespacho, L. Q., Cavallini, D. C. U., Zavarizi, A. C. M., Pinto, R. A., & Rossi, E. A. (2014). Evaluation of the use of probiotic acid lactic bacteria in the development of chicken hamburger. International Food Research Journal, 21, 965–972.Google Scholar
- Borch, E., & Arinder, P. (2002). Bacteriological safety issues in red meat and ready-to-eat meat products, as well as control measures. Meat Science, 62, 381–390.PubMedCrossRefGoogle Scholar
- Borilova, G., Hulankova, R., Svobodova, I., Jezek, F., Hutarova, Z., Vecerek, V., & Steinhauserova, I. (2016). The effect of storage conditions on the hygiene and sensory status of wild boar meat. Meat Science, 118, 71–77.PubMedCrossRefGoogle Scholar
- Brightwell, E., Boerema, J., Mills, J., Mowat, E., & Pulford, D. (2006). Identifying the bacterial community on the surface of Intralox™ belting in a meat boning room by culture-dependent and culture-independent 16S rDNA sequence analysis. International Journal of Food Microbiology, 109, 47–53.PubMedCrossRefGoogle Scholar
- Brightwell, G., Clemens, R., Adam, K., Urlich, S., & Boerema, J. (2009). Comparison of culture-dependent and independent techniques for characterisation of the microflora of peroxyacetic acid treated, vacuum-packaged beef. Food Microbiology, 26, 283–288.PubMedCrossRefGoogle Scholar
- Buchanan, R. L., Garris, L. G. M., Hayman, M. M., Jackson, T. C., & Whiting, R. C. (2017). A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control, 75, 1–13.CrossRefGoogle Scholar
- Budde, B. B., Hornbaek, T., Jacobsen, T., Barkholt, V., & Koch, A. G. (2003). Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: Culture isolation, bacteriocin identification, and meat application experiments. International Journal of Food Microbiology, 83, 171–184.PubMedCrossRefGoogle Scholar
- Caparros Megido, R., Sablon, L., Geuens, M., Brostaux, Y., Alabi, T., Blecker, C., Drugmand, D., Haubruge, É., & Francis, F. (2014). Edible insects acceptance by Belgian consumers: Promising attitude for entomophagy development. Journal of Sensory Studies, 29, 14–20.CrossRefGoogle Scholar
- Carr, P. R., Walter, V., Brenner, H., & Hoffmeister, M. (2016). Meat subtypes and their association with colorectal cancer: Systematic review and meta-analysis. International Journal of Cancer, 138, 293–302.PubMedCrossRefGoogle Scholar
- Carrizosa, E., Benito, M. J., Ruiz-Moyano, S., Hernández, A., Villalobos, C., Martin, A., & Córdoba, M. G. (2017). Bacterial communities of fresh goat meat packaged in modified atmosphere. Food Microbiology, 65, 57–63.PubMedCrossRefGoogle Scholar
- Castellano, P., & Vignolo, G. (2006). Inhibition of Listeria innocua and Brochothrix thermosphacta in vacuum-packaged meat by addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Letters in Applied Microbiology, 43, 194–199.PubMedCrossRefGoogle Scholar
- Castellano, P., González, C., Carduza, F., & Vignolo, G. (2010). Protective action of Lactobacillus curvatus CRL705 on vacuum-packaged raw beef. Effect on sensory and structural characteristics. Meat Science, 85, 394–401.PubMedCrossRefGoogle Scholar
- Castellano, P., Belfiore, C., & Vignolo, G. (2011). Combination of bioprotective cultures with EDTA to reduce Escherichia coli O157:H7 in frozen ground-beef patties. Food Control, 22, 1461–1465.CrossRefGoogle Scholar
- Cavalheiro, C. P., Ruiz-Capillas, C., Herrero, A. M., Jiménez-Colmenero, F., de Menezes, C. R., & Fries, L. L. M. (2015). Application of probiotic delivery systems in meat products. Trends in Food Science and Technology, 46, 120–131.CrossRefGoogle Scholar
- Cerveny, J., Meyer, J. D., & Hall, P. A. (2010). Microbiological spoilage of meat and poultry products. In W. H. Sperber & M. P. Doyle (Eds.), Compendium of the microbiological spoilage of foods and beverages (pp. 69–86). New York: Springer.Google Scholar
- Chaillou, S., Champomier-Vergès, M. C., Cornet, M., Crutz-Le Coq, A. M., Dudez, A. M., Martin, V., Beaufils, S., Darbon-Rongère, E., Bossy, R., Loux, V., & Zagorec, M. (2005). The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23k. Nature Biotechnology, 23, 1527–1533.PubMedCrossRefGoogle Scholar
- Chaillou, S., Christieans, S., Rivollier, M., Lucquin, I., Champomier-Vergès, M. C., & Zagorec, M. (2014). Quantification and efficiency of Lactobacillus sakei strain mixtures used as protective cultures in ground beef. Meat Science, 97, 332–338.PubMedCrossRefGoogle Scholar
- Chaillou, S., Choulot-Talmon, A., Caekebeke, H., Cardinal, M., Christieans, S., Denis, C., Desmonts, M. H., Dousset, X., Feurer, C., Hamon, E., Joffraud, J. J., La Carbona, S., Leroi, F., Leroy, S., Lorre, S., Macé, S., Pilet, M. F., Prévost, H., Rivollier, M., Roux, D., Talon, R., Zagorec, M., & Champomier-Vergès, M. C. (2015). Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. The ISME Journal, 9, 1105–1118.PubMedCrossRefGoogle Scholar
- Chang, J. Y., Shin, S. M., Chun, J., Lee, J. H., & Seo, J. K. (2011). Pyrosequencing-based molecular monitoring of the intestinal bacterial colonization in preterm infants. Journal of Pediatric Gastroenterology and Nutrition, 53, 512–519.PubMedGoogle Scholar
- Chevallier, I., Ammor, S., Laguet, A., Labayle, S., Castanet, V., Dufour, E., & Talon, R. (2006). Microbial ecology of a small-scale facility producing traditional dry sausage. Food Control, 17, 446–453.CrossRefGoogle Scholar
- Chilton, S. N., Burton, J. P., & Reid, G. (2015). Inclusion of fermented foods in food guides around the world. Nutrients, 7, 390–404.PubMedPubMedCentralCrossRefGoogle Scholar
- Chipley, J. R., & May, K. N. (1968). Survival of aerobic and anaerobic bacteria in chicken meat during freeze-dehydration, rehydration and storage. Applied Microbiology, 16, 445–449.PubMedPubMedCentralGoogle Scholar
- Chouliara, E., Karatapanis, A., Savvaidis, I. N., & Kontominas, M. G. (2007). Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4°C. Food Microbiology, 24, 607–617.PubMedCrossRefGoogle Scholar
- Cocconcelli, P. S., & Fontana, C. (2014). Bacteria. In F. Toldrá (Ed.), Handbook of fermented meat and poultry (2nd ed., pp. 117–128). Hoboken, NJ: Wiley-Blackwell.Google Scholar
- Cocolin, L., Urso, R., Rantsiou, K., Cantoni, C., & Comi, G. (2006). Dynamics and characterization of yeasts during natural fermentation of Italian sausages. FEMS Yeast Research, 6, 692–701.PubMedCrossRefGoogle Scholar
- Cocolin, L., Dolci, P., Rantsiou, K., Urso, R., Cantoni, C., & Comi, G. (2009). Lactic acid bacteria ecology of three traditional fermented sausages produced in the North Italy as determined by molecular methods. Meat Science, 82, 125–132.PubMedCrossRefGoogle Scholar
- Comi, G., & Iacumin, L. (2012). Identification and process origin of bacteria responsible for cavities and volatile off-flavour compounds in artisan cooked ham. Food Science and Technology, 47, 114–121.Google Scholar
- Comi, G., Andyanto, D., Manzano, M., & Iacumin, L. (2016). Lactococcus lactis and Lactobacillus sakei as bio-protective culture to eliminate Leuconostoc mesenteroides spoilage and improve the shelf life and sensorial characteristics of commercial cooked bacon. Food Microbiology, 58, 16–22.PubMedCrossRefGoogle Scholar
- Coton, E., Desmonts, M. H., Leroy, S., Coton, M., Jamet, E., Christieans, S., Donnio, P. Y., Lebert, I., & Talon, R. (2010). Biodiversity of coagulase-negative staphylococci in French cheeses, dry fermented sausages, processing environments and clinical samples. International Journal of Food Microbiology, 137, 221–229.PubMedCrossRefGoogle Scholar
- D’Amico, S., Collins, T., Marx, J. C., Feller, G., & Gerday, C. (2006). Psychrophilic microorganisms: Challenges for life. EMBO Reports, 7, 385–389.PubMedPubMedCentralCrossRefGoogle Scholar
- David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559–563.PubMedPubMedCentralCrossRefGoogle Scholar
- Davidson, C. M., & Cronin, F. (1973). Medium for the selective enumeration of lactic acid bacteria from foods. Applied and Environmental Microbiology, 26, 439–440.Google Scholar
- De Filippis, F., La Storia, A., Villani, F., & Ercolini, D. (2013). Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing. PLoS One, 8, e70222.PubMedPubMedCentralCrossRefGoogle Scholar
- De Smet, S., & Vossen, E. (2016). Meat: the balance between nutrition and health. A review. Meat Science, 120, 145–156.PubMedCrossRefGoogle Scholar
- De Vuyst, L., Falony, G., & Leroy, F. (2008). Probiotics in fermented sausage. Meat Science, 80, 75–78.PubMedCrossRefGoogle Scholar
- Djinovic, J., Popovic, A., & Jira, W. (2008). Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. Meat Science, 80, 449–456.PubMedCrossRefGoogle Scholar
- Doré, J., & Blottière, H. (2015). The influence of diet on the gut microbiota and its consequences for health. Current Opinion in Biotechnology, 32, 195–199.PubMedCrossRefGoogle Scholar
- Doulgeraki, A. I., Paramithiotis, S., Kagkli, D. M., & Nychas, G.-J. E. (2010). Lactic acid bacteria population dynamics during minced beef storage under aerobic or modified atmosphere packaging conditions. Food Microbiology, 27, 1028–1034.PubMedCrossRefGoogle Scholar
- Doulgeraki, A. I., Paramithiotis, S., & Nychas, G.-J. E. (2011). Characterization of the Enterobacteriaceae community that developed during storage of minced beef under aerobic or modified atmosphere packaging conditions. International Journal of Food Microbiology, 145, 77–83.PubMedCrossRefGoogle Scholar
- Doulgeraki, A. I., Ercolini, D., Villani, F., & Nychas, G.-J. E. (2012). Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology, 157, 130–141.PubMedCrossRefGoogle Scholar
- Drosinos, E. H., Mataragas, M., Kampani, A., Kritikos, D., & Metaxopoulos, I. (2006). Inhibitory effect of organic acid salts on spoilage flora in culture medium and cured cooked meat products under commercial manufacturing conditions. Meat Science, 73, 75–81.PubMedCrossRefGoogle Scholar
- Dušková, M., Kameník, J., Šedo, O., Zdráhal, Z., Salàkovà, A., Karpíšková, R., & Lačanin, I. (2015). Survival and growth of lactic acid bacteria in hot smoked dry sausages (non-fermented salami) with and without sensory deviations. Food Control, 50, 804–808.CrossRefGoogle Scholar
- Dušková, M., Kameník, J., Lačanin, I., Šedo, O., & Zdráhal, Z. (2016). Lactic acid bacteria in cooked hams as sources of contamination and chances of survival in the product. Food Science and Technology, 61, 492–495.Google Scholar
- Dutton, R. J., & Turnbaugh, P. J. (2012). Taking a metagenomic view of human nutrition. Current Opinion in Clinical and Nutrition and Metabolic Care, 15, 448–454.CrossRefGoogle Scholar
- Ercolini, D., Russo, F., Torrieri, E., Masi, P., & Villani, F. (2006). Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Applied and Environmental Microbiology, 70, 4663–4671.CrossRefGoogle Scholar
- Ercolini, D., Ferrocino, I., La Storia, A., Mauriello, G., Gigli, S., Masi, P., & Villani, F. (2009a). Development of spoilage microbiota in beef stored in nisin activated packaging. Food Microbiology, 27, 137–143.PubMedCrossRefGoogle Scholar
- Ercolini, D., Russo, F., Nasi, A., Ferranti, P., & Villani, F. (2009b). Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Applied and Environmental Microbiology, 75, 1990–2001.PubMedPubMedCentralCrossRefGoogle Scholar
- Ercolini, D., Ferrocino, I., Nasi, A., Ndagijimana, M., Vernocchi, P., La Storia, A., Laghi, L., Mauriello, M., Guerzoni, M. E., & Villani, F. (2011). Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Applied and Environmental Microbiology, 77, 7372–7381.PubMedPubMedCentralCrossRefGoogle Scholar
- Erkkilä, S., Petäjä, E., Eerola, S., Lilleberg, L., Mattila-Sandholm, T., & Suihko, M. L. (2001). Flavour profiles of dry sausages fermented by selected novel meat starter cultures. Meat Science, 58, 111–116.PubMedCrossRefGoogle Scholar
- Fijan, S. (2014). Microorganisms with claimed probiotic properties: An overview of recent literature. International Journal of Environmental Research and Public Health, 11, 4745–4767.PubMedPubMedCentralCrossRefGoogle Scholar
- Flores, M., Corral, S., Cano-García, L., Salvador, A., & Belloch, C. (2015). Yeast strains as potential aroma enhancers in dry fermented sausages. International Journal of Food Microbiology, 212, 16–24.PubMedCrossRefGoogle Scholar
- Fonseca, S., Cachaldora, A., Gómez, M., Franco, I., & Carballo, J. (2013). Monitoring the bacterial population dynamics during the ripening of Galician chorizo, a traditional dry fermented Spanish sausage. Food Microbiology, 33, 77–84.PubMedCrossRefGoogle Scholar
- Fougy, L., Desmonts, M. H., Coeuret, G., Fassel, C., Hamon, E., Hézard, B., Champomier-Vergès, M. C., & Chaillou, S. (2016). Reducing salt in raw pork sausages increases spoilage and correlates with reduced bacterial diversity. Applied and Environmental Microbiology, 82, 3928–3939.PubMedPubMedCentralCrossRefGoogle Scholar
- Foulquié Moreno, M. R., Sarantinopoulos, P., Tsakalidou, E., & De Vuyst, L. (2006). The role and application of enterococci in food and health. International Journal of Food Microbiology, 106, 1–24.PubMedCrossRefGoogle Scholar
- Franz, C. M. A. P., Huch, M., Abriouel, H., Holzapfel, W., & Gálvez, A. (2011). Enterococci as probiotics and their implications in food safety. International Journal of Food Microbiology, 151, 125–140.PubMedCrossRefGoogle Scholar
- Geeraerts, W., Pothakos, V., De Vuyst, L., & Leroy, F. (2017). Diversity of the dominant bacterial species on sliced cooked pork products at expiration date in the Belgian retail. Food Microbiology, 65, 236–243.PubMedCrossRefGoogle Scholar
- Gerber, P. J., Mottet, A., Opio, C. I., Falcucci, A., & Teillard, F. (2015). Environmental impacts of beef production: Review of challenges and perspectives for durability. Meat Science, 109, 2–12.PubMedCrossRefGoogle Scholar
- Greppi, A., Ferrocino, I., La Storia, A., Rantsiou, K., Ercolini, D., & Cocolin, L. (2015). Monitoring of the microbiota of fermented sausages by culture independent rRNA-based approaches. International Journal of Food Microbiology, 212, 65–75.CrossRefGoogle Scholar
- Guran, H. S., Vural, A., & Erkan, M. E. (2014). The prevalence and molecular typing of Clostridium perfringens in ground beef and sheep meats. Journal für Verbraucherschutz und Lebensmittelsicherheit, 9, 121–128.CrossRefGoogle Scholar
- Hammes, W. P., & Hertel, C. (1998). New developments in meat starter cultures. Meat Science, 49, S125–S138.CrossRefGoogle Scholar
- Han, Q., Kong, B., Chen, Q., Sun, F., & Zhang, H. (2017). In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics. Journal of Functional Foods, 32, 391–400.CrossRefGoogle Scholar
- Harada, T., Dang, V. C., Nguyen, D. P., Nguyen, T. A. D., Sakamoto, M., Ohkuma, M., Matooka, D., Nakamura, S., Uchida, K., Jinnai, M., Yonogi, S., Kawahara, R., Kawai, T., Kumeda, Y., & Yamamoto, Y. (2016). Enterococcus saigonensis sp. nov., isolated from retail chicken meat and liver. International Journal of Systematic and Evolutionary Microbiology, 66, 3779–3785.PubMedCrossRefGoogle Scholar
- Haugaard, P., Hansen, F., Jensen, M., & Grunert, K. G. (2014). Consumer attitudes toward new technique for preserving organic meat using herbs and berries. Meat Science, 96, 126–135.PubMedCrossRefGoogle Scholar
- Héquet, A., Laffitte, V., Simon, L., De Sousa-Caetano, D., Thomas, C., Fremaux, C., & Berjeaud, J. M. (2007). Characterization of new bacteriocinogenic lactic acid bacteria isolated using a medium designed to simulate inhibition of Listeria by Lactobacillus sakei 2512 on meat. International Journal of Food Microbiology, 113, 67–74.PubMedCrossRefGoogle Scholar
- Hoffman, L. C., & Dicks, L. M. T. (2011). Preliminary results indicating game meat is more resistant to microbiological spoilage. In P. Paulsen, A. Bauer, M. Vodnansky, R. Winkelmayer, & F. J. M. Smulders (Eds.), Game meat hygiene in focus: Microbiology, epidemiology, risk analysis and quality assurance (pp. 137–139). Wageningen, The Netherlands: Wageningen Academic Publishers.CrossRefGoogle Scholar
- Holko, I., Hrabe, J., Salakova, A., & Rada, V. (2013). The substitution of a traditional starter culture in mutton fermented sausages by Lactobacillus acidophilus and Bifidobacterium animalis. Meat Science, 94, 275–279.PubMedCrossRefGoogle Scholar
- Höll, L., Behr, J., & Vogel, R. F. (2016). Identification and growth dynamics of meat spoilage microorganisms in modified atmosphere packaged poultry meat by MALDI-TOF MS. Food Microbiology, 60, 84–91.PubMedCrossRefGoogle Scholar
- Hospital, X. F., Hierro, E., Stringer, S., & Fernández, M. (2016). A study on the toxigenesis by Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages. International Journal of Food Microbiology, 218, 66–70.PubMedCrossRefGoogle Scholar
- Huang, H., Brooks, B. W., Lowman, R., & Carrillo, C. D. (2015). Campylobacter species in animal, food, and environmental sources, and relevant testing programs in Canada. Canadian Journal of Microbiology, 61, 701–721.PubMedCrossRefGoogle Scholar
- Huang, Y., Ye, K., Yu, K., Wang, K., & Zhou, G. (2016). The potential influence of two Enterococcus faecium on the growth of Listeria monocytogenes. Food Control, 67, 18–24.CrossRefGoogle Scholar
- Hue, O., Allain, V., Laisney, M. J., Le Bouquin, S., Lalande, F., Petetin, I., Rouxel, S., Quesne, S., Gloaguen, P. Y., Picherot, M., Santolini, J., Bougeard, S., Salvat, G., & Chemaly, M. (2011). Campylobacter contamination of broiler caeca and carcasses at the slaughterhouse and correlation with Salmonella contamination. Food Microbiology, 28, 862–868.PubMedCrossRefGoogle Scholar
- Hugas, M., Garriga, M., & Aymerich, M. T. (2003). Functionality of enterococci in meat products. International Journal of Food Microbiology, 88, 223–233.PubMedCrossRefGoogle Scholar
- Hultman, J., Rahkila, R., Ali, J., Rousu, J., & Björkroth, K. J. (2015). Meat processing plant microbiome and contamination patterns of cold-tolerant bacteria causing food safety and spoilage risks in the manufacture of vacuum-packaged cooked sausages. Applied and Environmental Microbiology, 81, 7088–7097.PubMedPubMedCentralCrossRefGoogle Scholar
- Iacumin, L., Chiesa, L., Boscolo, D., Manzano, M., Cantoni, C., Orlic, S., & Comi, G. (2009). Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiology, 26, 65–70.PubMedCrossRefGoogle Scholar
- Jääskeläinen, E., Johansson, P., Kostiainen, O., Nieminen, T., Schmidt, G., Somervuo, P., Mohsina, M., Vanninen, P., Auvinen, P., & Björkroth, J. (2013). Significance of heme-based respiration in meat spoilage caused by Leuconostoc gasicomitatum. Applied and Environmental Microbiology, 79, 1078–1085.PubMedPubMedCentralCrossRefGoogle Scholar
- Jacome, S. L., Fonseca, S., Pinheiro, R., Todorov, S. D., Noronha, L., Silva, J., Gomes, A., Pintado, M., Morais, A. M. M. B., Teixeira, P., & Vaz-Velho, M. (2014). Effect of lactic acid bacteria on quality and safety of ready-to-eat sliced cured/smoked meat products. Chemical Engineering Transactions, 38, 403–408.Google Scholar
- Jacquot, A., Neveu, D., Aujoulat, F., Mercier, G., Marchandin, H., Jumas-Bilak, E., & Picaud, J. C. (2011). Dynamics and clinical evolution of bacterial gut microflora in extremely premature patients. Journal of Pediatrics, 158, 390–396.PubMedCrossRefGoogle Scholar
- Jafari, M., Mortazavian, A. M., Hosseini, H., Safaei, F., Mousavi Khaneghah, A., & Sant’Ana, A. S. (2017). Probiotic Bacillus: Fate during sausage processing and storage and influence of different culturing conditions on recovery of their spores. Food Research International, 95, 46–51.PubMedCrossRefGoogle Scholar
- Janssens, M., Myter, N., De Vuyst, L., & Leroy, F. (2012). Species diversity and metabolic impact of the microbiota are low in spontaneously acidified Belgian sausages with an added starter culture of Staphylococcus carnosus. Food Microbiology, 29, 167–177.PubMedCrossRefGoogle Scholar
- Janssens, M., Myter, N., De Vuyst, L., & Leroy, F. (2013). Community dynamics of coagulase-negative staphylococci during spontaneous artisan-type meat fermentations differ between smoking and moulding treatments. International Journal of Food Microbiology, 166, 168–175.PubMedCrossRefGoogle Scholar
- Jayamanne, V. S., & Adams, M. R. (2006). Determination of survival, identity and stress resistance of probiotic bifidobacteria in bio-yoghurts. Letters in Applied Microbiology, 42, 189–194.PubMedCrossRefGoogle Scholar
- Jiang, Y., Gao, F., Xu, X. L., Su, Y., Ye, K. P., & Zhou, G. H. (2010). Changes in the bacterial communities of vacuum-packaged pork during chilled storage analyzed by PCR–DGGE. Meat Science, 86, 889–895.PubMedCrossRefGoogle Scholar
- Jimenez, E., Delgado, S., Maldonado, A., Arroyo, R., Albújar, M., García, N., Jariod, M., Fernández, L., Gómez, A., & Rodríguez, J. M. (2008). Staphylococcus epidermidis: A differential trait of the fecal microbiota of breast-fed infants. BMC Microbiology, 8, 143.PubMedPubMedCentralCrossRefGoogle Scholar
- Johansson, P., Paulin, L., Säde, E., Salovuori, N., Alatalo, E. R., Björkroth, K. J., & Auvinen, P. (2011). Genome sequence of a food spoilage lactic acid bacterium, Leuconostoc gasicomitatum LMG 18811T, in association with specific spoilage reactions. Applied and Environmental Microbiology, 77, 4344–4351.PubMedPubMedCentralCrossRefGoogle Scholar
- Jones, R. J. (2004). Observations on the succession dynamics of lactic acid bacteria populations in chill-stored vacuum-packaged beef. International Journal of Food Microbiology, 90, 273–282.PubMedCrossRefGoogle Scholar
- Josephs-Spaulding, J., Beeler, E., & Singh, O. V. (2016). Human microbiome versus food-borne pathogens: Friend or foe. Applied Microbiology and Biotechnology, 100, 4845–4863.PubMedCrossRefGoogle Scholar
- Kang, D. H., Koohmaraie, M., & Siragus, G. R. (2001). Application of multiple antimicrobial interventions for microbial decontamination of commercial beef trim. Journal of Food Protection, 64, 168–171.PubMedCrossRefGoogle Scholar
- Klingberg, T. D., & Budde, B. B. (2006). The survival and persistence in the human gastrointestinal tract of five potential probiotic lactobacilli consumed as freeze-dried cultures or as probiotic sausage. International Journal of Food Microbiology, 109, 157–159.PubMedCrossRefGoogle Scholar
- Klingberg, T. D., Axelsson, L., Naterstad, K., Elsser, D., & Budde, B. B. (2005). Identification of potential probiotic starter cultures for Scandinavian-type fermented sausages. International Journal of Food Microbiology, 105, 419–431.PubMedCrossRefGoogle Scholar
- Koutsoumanis, K., Stamatiou, A., Skandamis, P., & Nychas, G.-J. E. (2006). Development of a microbial model for the combined effect of temperature and pH on spoilage of ground meat, and validation of the model under dynamic temperature conditions. Applied and Environmental Microbiology, 72, 124–134.PubMedPubMedCentralCrossRefGoogle Scholar
- Kudirkienė, E., Bunevičienė, J., Brøndsted, L., Ingmer, H., Olsen, J. E., & Malakauskas, M. (2011). Evidence of broiler meat contamination with post-disinfection strains of Campylobacter jejuni from slaughterhouse. International Journal of Food Microbiology, 145, 5116–5120.CrossRefGoogle Scholar
- Kumari, A., Catanzaro, R., & Marotta, F. (2011). Clinical importance of lactic acid bacteria: A short review. Acta Bio-medica, 82, 177–180.PubMedGoogle Scholar
- La Storia, A., Ferrocino, I., Torrieri, E., Di Monaco, R., Mauriello, G., Villani, F., & Ercolini, D. (2012). A combination of modified atmosphere and antimicrobial packaging to extend the shelf-life of beefsteaks stored at chill temperature. International Journal of Food Microbiology, 158, 186–194.PubMedCrossRefGoogle Scholar
- Laursen, B. G., Byrne, D. V., Kirkegaard, J. B., & Leisner, J. J. (2009). Lactic acid bacteria associated with a heat-processed pork product and sources of variation affecting chemical indices of spoilage and sensory characteristics. Journal of Applied Microbiology, 106, 543–553.PubMedCrossRefGoogle Scholar
- Lebert, I., Leroy, S., Giammarinaro, P., Lebert, A., Chacornac, J. P., Bover-Cid, S., Vidal, M., & Talon, R. (2007). Diversity of micro-organisms in environments and dry fermented sausages of French traditional small units. Meat Science, 76, 1112–1122.CrossRefGoogle Scholar
- Leisner, J. J., Laursen, B., Provost, H., Drider, D., & Dalgaard, P. (2007). Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiology Reviews, 31, 592–613.PubMedPubMedCentralCrossRefGoogle Scholar
- Leitzmann, C. (2014). Vegetarian nutrition: Past, present, future. American Journal of Clinical Nutrition, 100, 496–502.CrossRefGoogle Scholar
- Lemay, M. J., Choquette, J., Delaquis, P. J., Gariépy, C., Rodrique, N., & Saucier, L. (2002). Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. International Journal of Food Microbiology, 78, 217–226.PubMedCrossRefGoogle Scholar
- Leroy, F., & Degreef, F. (2015). Convenient meat and meat products. Societal and technological issues. Appetite, 94, 40–46.PubMedCrossRefGoogle Scholar
- Leroy, F., & Praet, I. (2015). Meat traditions. The co-evolution of humans and meat. Appetite, 90, 200–211.PubMedCrossRefGoogle Scholar
- Leroy, F., & Praet, I. (2017). Animal killing and postdomestic meat production. Journal of Agricultural and Environmental Ethics, 30, 67–86.CrossRefGoogle Scholar
- Leroy, F., Verluyten, J., & De Vuyst, L. (2006). Functional meat starter cultures for improved sausage fermentation. International Journal of Food Microbiology, 106, 270–285.PubMedCrossRefGoogle Scholar
- Leroy, F., Vasilopoulos, C., Van Hemelryck, S., Falony, G., & De Vuyst, L. (2009). Volatile analysis of spoiled, artisan-type, modified-atmosphere-packaged cooked ham stored under different temperatures. Food Microbiology, 26, 94–102.PubMedCrossRefGoogle Scholar
- Leroy, S., Giammarinaro, P., Chacornac, J. P., Lebert, I., & Talon, R. (2010). Biodiversity of indigenous staphylococci of naturally fermented dry sausages and manufacturing environments of small-scale processing units. Food Microbiology, 27, 294–301.PubMedCrossRefGoogle Scholar
- Leroy, F., Geyzen, A., Janssens, M., De Vuyst, L., & Scholliers, P. (2013). Meat fermentation at the crossroads of innovation and tradition: A historical outlook. Trends in Food Science and Technology, 31, 130–137.CrossRefGoogle Scholar
- Leroy, F., Scholliers, P., & Amilien, V. (2015). Elements of innovation and tradition in meat fermentation: conflicts and synergies. International Journal of Food Microbiology, 212, 2–8.PubMedCrossRefGoogle Scholar
- Libera, J., Karwowska, M., Stasiak, D. M., & Dolatowski, Z. J. (2015). Microbiological and physicochemical properties of dry-cured neck inoculated with probiotic of Bifidobacterium animalis ssp. lactis BB-12. International Journal of Food Science and Technology, 50, 1560–1566.CrossRefGoogle Scholar
- Lingbeck, J. M., Cordero, P., O’Bryan, C. A., Johnson, M. G., Ricke, S. C., & Crandall, P. G. (2014). Functionality of liquid smoke as an all-natural antimicrobial in food preservation. Meat Science, 97, 197–206.PubMedCrossRefGoogle Scholar
- Lorenzo, J. M., & Gómez, M. (2012). Shelf life of fresh foal meat under MAP, overwrap and vacuum packaging conditions. Meat Science, 92, 610–618.PubMedCrossRefGoogle Scholar
- Lowry, P. D., & Gill, C. O. (1984). Mould growth on meat at freezing temperatures. International Journal of Refrigeration, 7, 133–136.CrossRefGoogle Scholar
- Lucquin, L., Zagorec, M., Champomier-Vergès, M., & Chaillou, S. (2012). Fingerprint of lactic acid bacteria population in beef carpaccio is influenced by storage process and seasonal changes. Food Microbiology, 29, 187–196.PubMedCrossRefGoogle Scholar
- Lytou, A. E., Panagou, E. Z., & Nychas, G.-J. E. (2017). Effect of different marinating conditions on the evolution of spoilage microbiota and metabolomic profile of chicken breast fillets. Food Microbiology, 66, 141–149.PubMedCrossRefGoogle Scholar
- Magistà, D., Susca, A., Ferrara, M., Logrieco, A. F., & Perrone, G. (2017). Penicillium species: Crossroad between quality and safety of cured meat production. Current Opinion in Food Science, 17, 36–40.CrossRefGoogle Scholar
- Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J., & Hutkins, R. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102.PubMedCrossRefGoogle Scholar
- Marin, C., Hernandez, A., & Lainez, M. (2009). Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poultry Science, 88, 424–431.PubMedCrossRefGoogle Scholar
- Martín, B., Garriga, M., Hugas, M., & Aymerich, T. (2005). Genetic diversity and safety aspects of enterococci from slightly fermented sausages. Journal of Applied Microbiology, 98, 1177–1190.PubMedCrossRefGoogle Scholar
- Martín, B., Garriga, M., Hugas, M., Bover-Cid, S., Veciana-Nogues, M. T., & Aymerich, T. (2006). Molecular, technological and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages. International Journal of Food Microbiology, 107, 148–158.PubMedCrossRefGoogle Scholar
- Martínez-Onandi, N., Castioni, A., San Martín, E., Rivas-Cañedo, A., Torriani, S., & Picon, A. (2017). Microbiota of high-pressure-processed Serrano ham investigated by culture-dependent and culture-independent methods. International Journal of Food Microbiology, 241, 298–307.PubMedCrossRefGoogle Scholar
- Matamoros, S., André, S., Hue, I., Prévost, H., & Pilet, M. P. (2010). Identification of lactic acid bacteria involved in the spoilage of pasteurized “foie gras” products. Meat Science, 85, 467–471.PubMedCrossRefGoogle Scholar
- Mauriello, G., Casaburi, A., Blaiotta, G., & Villani, F. (2004). Isolation and technological properties of coagulase negative staphylococci from fermented sausages of Southern Italy. Meat Science, 67, 149–158.PubMedCrossRefGoogle Scholar
- Mc Nulty, K., Soon, J. M., Wallace, C. A., & Nastasijevic, I. (2016). Antimicrobial resistance monitoring and surveillance in the meat chain: a report from five countries in the European Union and European Economic Area. Trends in Food Science and Technology, 58, 1–13.CrossRefGoogle Scholar
- Mendonça, R. C. S., Gouvea, D. M., Hungano, H. M., Sodre, A. F., & Querol-Simon, A. (2013). Dynamics of the yeasts flora in artisanal country style and industrial dry cured sausage. Food Control, 29, 143–148.CrossRefGoogle Scholar
- Metaxopoulos, J., Mataragas, M., & Drosinos, E. H. (2002). Microbial interaction in cooked cured meat products under vacuum or modified atmosphere at 4°C. Journal of Applied Microbiology, 93, 363–373.PubMedCrossRefGoogle Scholar
- Milios, K., Drosinos, E. H., & Zoiopoulos, P. E. (2014). Carcass decontamination methods in slaughterhouses: A review. Journal of the Hellenic Veterinarian Medical Society, 65, 65–78.CrossRefGoogle Scholar
- Morales, P. A., Aguirre, J. S., Troncoso, M. R., & Figueroa, G. O. (2016). Phenotypic and genotypic characterization of Pseudomonas spp. present in spoiled poultry fillets sold in retail settings. Food Science and Technology, 73, 609–614.Google Scholar
- Müller, A., Reichhardt, R., Fogarassy, G., Basse, R., Gibis, M., Weiss, J., Schmidt, H., & Weiss, A. (2016). Safety assessment of selected Staphylococcus carnosus strains with regard to their application as meat starter culture. Food Control, 66, 93–99.CrossRefGoogle Scholar
- Muthukumarasamy, P., & Holley, R. A. (2007). Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiology, 24, 82–88.PubMedCrossRefGoogle Scholar
- Nieminen, T. T., Vihavainen, E., Paloranta, A., Lehto, J., Paulin, L., Auvinen, P., Solsimaa, M., & Björkroth, K. J. (2011). Characterization of psychrotrophic bacterial communities in modified atmosphere-packed meat with terminal restriction fragment length polymorphism. International Journal of Food Microbiology, 144, 360–366.PubMedCrossRefGoogle Scholar
- Nieminen, T. T., Koskinen, K., Laine, P., Hultman, J., Säde, E., Paulin, L., Paloranta, A., Johansson, P., Björkroth, J., & Auvinen, P. (2012). Comparison of microbial communities in marinated and unmarinated broiler meat by metagenomics. International Journal of Food Microbiology, 157, 142–149.PubMedCrossRefGoogle Scholar
- Nieminen, T. T., Dalgaard, P., & Björkroth, J. (2016). Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork. International Journal of Food Microbiology, 218, 86–95.PubMedCrossRefGoogle Scholar
- Nogueira Ruiz, J., Montes Villanueva, N. D., Pavaro-Trindade, C. S., & Contreras-Castillo, C. J. (2014). Physicochemical, microbiological and sensory assessments of Italian salami sausages with probiotic potential. Scientia Argricola, 71, 204–211.CrossRefGoogle Scholar
- Núñez, F., Lara, M. S., Peromingo, B., Delgado, J., Sánchez-Montero, L., & Andrade, M. J. (2015). Selection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dry-fermented sausages. Food Microbiology, 46, 114–120.PubMedCrossRefGoogle Scholar
- Nyquist, O. L., McLeod, A., Brede, D. A., Snipen, L., Aakra, Å., & Nes, I. F. (2011). Comparative genomics of Lactobacillus sakei with emphasis on strains from meat. Molecular Genetics and Genomics, 285, 297–311.PubMedCrossRefGoogle Scholar
- O’Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Reports, 7, 688–693.PubMedPubMedCentralCrossRefGoogle Scholar
- Oakley, B. B., Morales, C. A., Line, J., Berrang, M. E., Meinersmann, R. J., Tillman, G. E., Wise, M. G., Siragusa, G. R., Hiet, K. L., & Seal, B. S. (2013). The poultry-associated microbiome: Network analysis and farm-to-fork characterizations. PLoS One, 8, 1–11.CrossRefGoogle Scholar
- Olivares, M., Díaz-Ropero, M. P., Gómez, N., Sierra, S., Lara-Villoslada, F., Martín, R., Rodríguez, J. M., & Xaus, J. (2006). Dietary deprivation of fermented foods causes a fall in innate immune response. Lactic acid bacteria can counteract the immunological effect of this deprivation. Journal of Dairy Research, 73, 492–498.PubMedCrossRefGoogle Scholar
- Ortega, E., Abriouel, H., Lucas, R., & Galvez, A. (2010). Multiple roles of Staphylococcus aureus enterotoxins: Pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins, 2, 2117–2131.PubMedCrossRefGoogle Scholar
- Ortiz, S., López, V., Garriga, M., & Martínez-Suárez, J. V. (2014). Antilisterial effect of two bioprotective cultures in a model system of Iberian chorizo fermentation. International Journal of Food Science and Technology, 49, 753–758.CrossRefGoogle Scholar
- Papagianni, M., Ambrosiadis, I., & Filiousis, G. (2007). Mould growth on traditional Greek sausages and penicillin production by Penicillium isolates. Meat Science, 76, 653–657.PubMedCrossRefGoogle Scholar
- Patsias, A., Chouliara, I., Badeka, A., Savvaidis, I. N., & Kontominas, M. G. (2006). Shelf-life of a chilled precooked chicken product stored in air and under modified atmospheres: Microbiological, chemical, sensory attributes. Food Microbiology, 23, 423–429.PubMedCrossRefGoogle Scholar
- Patterson, M. P., Mckay, A. M., Connolly, M., & Linton, M. (2010). Effect of high pressure on the microbiological quality of cooked chicken during storage at normal and abuse refrigeration temperatures. Food Microbiology, 27, 266–273.PubMedCrossRefGoogle Scholar
- Pavelková, A., Kačániová, M., Horská, E., Rovná, K., Hleba, L., & Petrová, J. (2014). The effect of vacuum packaging, EDTA, oregano and thyme oils on the microbiological quality of chicken’s breast. Anaerobe, 29, 128–133.PubMedCrossRefGoogle Scholar
- Pennacchia, C., Ercolini, D., & Villani, F. (2011). Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiology, 28, 84–93.PubMedCrossRefGoogle Scholar
- Pidcock, K., Heard, G. M., & Henriksson, A. (2002). Application of nontraditional meat starter cultures in production of Hungarian salami. International Journal of Food Microbiology, 76, 75–81.PubMedCrossRefGoogle Scholar
- Piotrowska-Cyplik, A., Myszka, K., Czarny, J., Ratajczak, K., Kowalski, R., Bieanska-Marecik, R., Staninska-Pieta, J., Nowak, J., & Cryplik, P. (2017). Characterization of specific spoilage organisms (SSOs) in vacuum-packed ham by culture-plating techniques and MiSeq next-generation sequencing technologies. Journal of the Science of Food and Agriculture, 97, 689–668.CrossRefGoogle Scholar
- Plé, C., Breton, J., Daniel, C., & Foligné, B. (2015). Maintaining gut ecosystems for health: Are transitory food bugs stowaways or part of the crew? International Journal of Food Microbiology, 213, 139–143.PubMedCrossRefGoogle Scholar
- Pothakos, V., Snauwaert, C., De Vos, P., Huys, G., & Devlieghere, F. (2014). Psychrotrophic members of Leuconostoc gasicomitatum, Leuconostoc gelidum and Lactococcus piscium dominate at the end of shelf-life in packaged and chilled-stored food products in Belgium. Food Microbiology, 39, 61–67.PubMedCrossRefGoogle Scholar
- Pothakos, V., Devlieghere, F., Villani, F., Björkroth, J., & Ercolini, D. (2015). Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Science, 109, 66–74.PubMedCrossRefGoogle Scholar
- Quercia, S., Candela, M., Giuliani, C., Turroni, S., Louiselli, D., Rampelli, S., Brigidi, P., Franceschi, C., Bacalini, M. G., Garagnani, P., & Pirazzini, C. (2014). From lifetime to evolution: Timescales of human gut microbiota adaptation. Frontiers in Microbiology, 5, 587.PubMedPubMedCentralCrossRefGoogle Scholar
- Raeisi, M., Tabaraei, A., Hashemi, M., & Behnampour, N. (2016). Effect of sodium alginate coating incorporated with nisin, Cinnamomum zeylanicum, and rosemary essential oils on microbial quality of chicken meat and fate of Listeria monocytogenes during refrigeration. International Journal of Food Microbiology, 238, 139–145.PubMedCrossRefGoogle Scholar
- Rahkila, R., Johansson, P., Säde, E., & Björkroth, J. (2011). Identification of enterococci from broiler products and a broiler processing plant and description of Enterococcus viikkiensis sp. nov. Applied and Environmental Microbiology, 77, 1196–1203.PubMedCrossRefGoogle Scholar
- Rantsiou, K., Urso, R., Iacumin, L., Cantoni, C., Cattaneo, P., Comi, G., & Cocolin, L. (2005). Culture-dependent and -independent methods to investigate the microbial ecology of Italian fermented sausages. Applied and Environmental Microbiology, 84, 1043–1049.Google Scholar
- Ravyts, F., De Vuyst, L., & Leroy, F. (2012). Bacterial diversity and functionalities in food fermentations. Engineering in Life Sciences, 12, 356–367.CrossRefGoogle Scholar
- Remenant, B., Jaffrès, E., Dousset, X., Pilet, M. F., & Zagorec, M. (2015). Bacterial spoilers of food: Behavior, fitness and functional properties. Food Microbiology, 45, 45–53.PubMedCrossRefGoogle Scholar
- Rimaux, T., Vrancken, G., Vuylsteke, B., De Vuyst, L., & Leroy, F. (2011). The pentose moiety of adenosine and inosine is an important energy source for the fermented-meat starter culture Lactobacillus sakei CTC 494. Applied and Environmental Microbiology, 77, 6539–6550.PubMedPubMedCentralCrossRefGoogle Scholar
- Rimaux, T., Rivière, A., Illeghems, K., Weckx, S., De Vuyst, L., & Leroy, F. (2012). Expression of the arginine deiminase pathway genes in Lactobacillus sakei is strain dependent and is affected by environmental pH. Applied and Environmental Microbiology, 78, 4874–4883.PubMedPubMedCentralCrossRefGoogle Scholar
- Roseiro, L. C., Gomes, A., & Santos, C. (2011). Influence of processing in the prevalence of polycyclic aromatic hydrocarbons in a Portuguese traditional meat product. Food and Chemical Toxicology, 49, 1340–1345.PubMedCrossRefGoogle Scholar
- Rosenstein, R., & Götz, F. (2013). What distinguishes highly pathogenic staphylococci from medium- and non-pathogenic? In U. Dobrindt, J. Hacker, & C. Svanborg (Eds.), Between pathogenicity and commensalism. Current topics in microbiology and immunology (Vol. 358, pp. 33–89). Berlin, Germany: Springer.CrossRefGoogle Scholar
- Rouger, A. (2017). Déscription et comportement des communautés bactériennes de la viande de poulet conserve sous atmosphère protectrice. PhD Thesis. Université Bretagne Loire, Rennes, France.Google Scholar
- Rouger, A., Remenant, B., Prévost, H., & Zagorec, M. (2017). A method to isolate bacterial communities and characterize ecosystems from food products: Validation and utilization in a reproducible chicken meat model. International Journal of Food Microbiology, 247, 38–47.PubMedCrossRefGoogle Scholar
- Rouhi, M., Sohrabvandi, S., & Mortazavian, M. (2013). Probiotic fermented sausage: Viability of probiotic microorganisms and sensory characteristics. Critical Reviews in Food Science and Nutrition, 53, 331–348.PubMedCrossRefGoogle Scholar
- Rubio, R., Aymerich, T., Bover-Cid, S., Guàrdia, M. D., Arnau, J., & Garriga, M. (2013a). Probiotic strains Lactobacillus plantarum 299V and Lactobacillus rhamnosus GG as starter cultures for fermented sausages. Food Science and Technology, 54, 51–56.Google Scholar
- Rubio, R., Bover-Cid, S., Martin, B., Garriga, M., & Aymerich, T. (2013b). Assessment of safe enterococci as bioprotective cultures in low-acid fermented sausages combined with high hydrostatic pressure. Food Microbiology, 33, 158–165.PubMedCrossRefGoogle Scholar
- Rubio, R., Jofré, A., Aymerich, T., Guàrdia, M. D., & Garriga, M. (2014a). Nutritionally enhanced fermented sausages as a vehicle for potential probiotic lactobacilli delivery. Meat Science, 96, 937–942.PubMedCrossRefGoogle Scholar
- Rubio, R., Jofré, A., Martín, B., Aymerich, T., & Garriga, M. (2014b). Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiology, 38, 303–311.PubMedCrossRefGoogle Scholar
- Rubio, R., Martín, B., Aymerich, T., & Garriga, M. (2014c). The potential probiotic Lactobacillus rhamnosus CTC1679 survives the passage through the gastrointestinal tract and its use as starter cultures results in safe nutritionally enhanced fermented sausages. International Journal of Food Microbiology, 186, 55–60.PubMedCrossRefGoogle Scholar
- Ruiz, J. N., Villanueva, N. D. M., Favaro-Trindade, C. S., & Contreras-Castillo, C. J. (2014). Physicochemical, microbiological and sensory assessments of Italian salami sausages with probiotic potential. Scientia Agricola, 71, 204–211.CrossRefGoogle Scholar
- Ruiz-Moyano, S., Martír, A., Benito, M. J., Hernández, A., Casquete, R., Serradilla, M. J., & Córdoba, M. G. (2009). Safety and functional aspects of pre-selected lactobacilli for probiotic use in Iberian dry-fermented sausages. Meat Science, 83, 460–467.PubMedCrossRefGoogle Scholar
- Ruiz-Moyano, S., Martír, A., Benito, M. J., Hernández, A., Casquete, R., Serradilla, M. J., & Córdoba, M. G. (2010). Safety and functional aspects of pre-selected pediococci for probiotic use in Iberian dry-fermented sausages. International Journal of Food Science and Technology, 45, 1138–1145.CrossRefGoogle Scholar
- Ruiz-Moyano, S., Martír, A., Benito, M. J., Hernández, A., Casquete, R., & Córdoba, M. G. (2011). Application of Lactobacillus fermentum HL57 and Pediococcus acidilactici SP979 as potential probiotics in the manufacture of traditional Iberian dry-fermented sausages. Food Microbiology, 28, 839–847.PubMedCrossRefGoogle Scholar
- Säde, E., Murros, A., & Björkroth, J. (2013). Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiology, 34, 252–258.PubMedCrossRefGoogle Scholar
- Säde, E., Lassila, E., & Björkroth, J. (2016). Lactic acid bacteria in dried vegetables and spices. Food Microbiology, 53, 110–114.PubMedCrossRefGoogle Scholar
- Salminen, S., Endo, A., Isolauri, E., & Scalabrin, D. (2015). Early gut colonization with lactobacilli and Staphylococcus in infants: The hygiene hypothesis extended. Journal of Pediatric Gastroenterology and Nutrition, 62, 80–86.CrossRefGoogle Scholar
- Samelis, J., Kakouri, A., & Rementzis, J. (2000). The spoilage microflora of cured, cooked turkey breasts prepared commercially with or without smoking. International Journal of Food Microbiology, 56, 133–143.PubMedCrossRefGoogle Scholar
- Sánchez Mainar, M., Xhaferi, R., Samapundo, S., Devlieghere, F., & Leroy, F. (2016). Opportunities and limitations for the production of safe fermented meats without nitrate and nitrite using an antibacterial Staphylococcus sciuri starter culture. Food Control, 69, 267–274.CrossRefGoogle Scholar
- Sánchez Mainar, M., Stavropoulou, D. A., & Leroy, F. (2017). Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: A review. International Journal of Food Microbiology, 247, 24–37.PubMedCrossRefGoogle Scholar
- Sanz, Y., Sánchez, E., Marzotto, M., Calabuig, M., Torriani, S., & Dellaglio, F. (2007). Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunology and Medical Microbiology, 51, 562–568.PubMedCrossRefGoogle Scholar
- Schirmer, B. C., Heir, E., & Langsrud, S. (2009). Characterization of the bacterial spoilage flora in marinated pork products. Journal of Applied Microbiology, 106, 1364–5072.CrossRefGoogle Scholar
- Selgas, M. D., & García, M. L. (2014). Yeasts. In F. Toldrá (Ed.), Handbook of fermented meat and poultry (2nd ed., pp. 139–146). Hoboken, NJ: Wiley-Blackwell.Google Scholar
- Sharma, S., Thind, S. S., & Kaur, A. (2015). In vitro meat production system: Why and how? Journal of Food Science and Technology, 52, 7599–7607.PubMedPubMedCentralCrossRefGoogle Scholar
- Shori, A. B. (2015). The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage. Biocatalysis and Agricultural Biotechnology, 4, 423–431.CrossRefGoogle Scholar
- Šimko, P. (2005). Factors affecting elimination of polycyclic aromatic hydrocarbons from smoked meat foods and liquid smoke flavorings. Molecular Nutrition and Food Research, 49, 637–647.PubMedCrossRefGoogle Scholar
- Simoncini, N., Rotelli, D., Virgili, R., & Quintavalla, S. (2007). Dynamics and characterization of yeasts during ripening of typical Italian dry-cured ham. Food Microbiology, 24, 577–584.PubMedCrossRefGoogle Scholar
- Sivertsvik, M., Rosnes, J. T., & Jeksrud, W. K. (2004). Solubility and absorption rate of carbon dioxide into non-respiring foods. Part 2. Raw fish fillets. Journal of Food Engineering, 63, 451–458.CrossRefGoogle Scholar
- Škaljac, S., Petrović, L., Tasić, T., Ikonić, P., Jokanović, M., Tomović, V., Džinić, N., Šojić, B., Tjapkin, A., & Škrbić, B. (2014). Influence of smoking in traditional and industrial conditions on polycyclic aromatic hydrocarbons content in dry fermented sausages (Petrovská klobása) from Serbia. Food Control, 40, 12–18.CrossRefGoogle Scholar
- Smil, V. (2013). Should we eat meat? Evolution and consequences of modern carnivory. Chichester, UK: Wiley-Blackwell.CrossRefGoogle Scholar
- Smolander, M., Alakomi, H., Ritvanen, T., Vainionpää, J., & Ahvenainen, R. (2004). Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions. A. Time-temperature indicators as quality-indicating tools. Food Control, 15, 217–229.CrossRefGoogle Scholar
- Sparo, M., Nuñez, G. G., Castro, M., Calcagno, M. L., Allende, M. A. G., & Ceci, M. (2008). Characteristics of an environmental strain, Enterococcus faecalis CECT7121, and its effects as additive on craft dry-fermented sausages. Food Microbiology, 25, 607–615.PubMedCrossRefGoogle Scholar
- Sparo, M. D., Confalonieri, A., Urbizu, L., Ceci, M., & Bruni, S. F. (2013). Bio-preservation of ground beef meat by Enterococcus faecalis CECT7121. Brazilian Journal of Microbiology, 44, 43–49.PubMedPubMedCentralCrossRefGoogle Scholar
- Srey, S., Jahid, I. K., & Ha, S. D. (2013). Biofilm formation in food industries: A food safety concern. Food Control, 31, 572–585.CrossRefGoogle Scholar
- Stella, S., Soncini, G., Ziino, G., Panebianco, A., Pedonese, F., Nuvoloni, R., Giannatale, E. D., Colavita, G., Alberghini, L., & Giaccone, V. (2017). Prevalence and quantification of thermophilic Campylobacter spp. in Italian retail poultry meat: Analysis of influencing factors. Food Microbiology, 62, 232–238.PubMedCrossRefGoogle Scholar
- Stellato, G., La Storia, A., De Flippis, F., Borriello, G., Villani, F., & Ercolini, D. (2016). Overlap of spoilage-associated microbiota between meat and the meat processing environment in small-scale and large-scale retail distributions. Applied and Environmental Microbiology, 82, 4045–4054.PubMedPubMedCentralCrossRefGoogle Scholar
- Stoops, J., Ruyters, S., Busschaert, P., Spaepen, R., Verreth, C., Claes, J., Lievens, B., & Van Campenhout, L. (2015). Bacterial community dynamics during cold storage of minced meat packaged under modified atmosphere and supplemented with different preservatives. Food Microbiology, 48, 192–199.PubMedCrossRefGoogle Scholar
- Sunesen, L. O., & Stahnke, L. H. (2003). Mould starter cultures for dry sausages-selection, application and effects. Meat Science, 65, 935–948.PubMedCrossRefGoogle Scholar
- Toldrá, F. (2014). Handbook of fermented meat and poultry (2nd ed.). Hoboken, NJ: Wiley-Blackwell.Google Scholar
- Toldrá, F. (2017). Lawrie’s meat science. Duxford, UK: Woodhead Publishing.Google Scholar
- Tremonte, P., Sorrentino, E., Pannella, G., Tipaldi, L., Sturchio, M., Masucci, A., Maiuro, L., Coppola, R., & Succi, M. (2017). Detection of different microenvironments and Lactobacillus sakei biotypes in Ventricina, a traditional fermented sausage from Central Italy. International Journal of Food Microbiology, 242, 132–140.PubMedCrossRefGoogle Scholar
- Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225–241.CrossRefGoogle Scholar
- Troy, D. J., & Kery, J. P. (2010). Consumer perception and the role of science in the meat industry. Meat Science, 86, 214–226.PubMedCrossRefGoogle Scholar
- Urso, R., Rantsiou, K., Cantoni, C., Comi, G., & Cocolin, L. (2006). Technological characterization of a bacteriocin-producing Lactobacillus sakei and its use in fermented sausages production. International Journal of Food Microbiology, 110, 232–239.PubMedCrossRefGoogle Scholar
- Vasilopoulos, C., Ravyts, F., De Maere, H., De Mey, E., Paelinck, H., De Vuyst, L., & Leroy, F. (2008). Evaluation of the spoilage lactic acid bacteria in modified-atmosphere-packaged artisan-type cooked ham using culture-dependent and culture-independent approaches. Journal of Applied Microbiology, 104, 1341–1353.PubMedCrossRefGoogle Scholar
- Vasilopoulos, C., De Maere, H., De Mey, E., Paelinck, H., De Vuyst, L., & Leroy, F. (2010a). Technology-induced selection towards the spoilage microbiota of artisan-type cooked ham packed under modified atmosphere. Food Microbiology, 27, 77–84.PubMedCrossRefGoogle Scholar
- Vasilopoulos, C., De Mey, E., Pevulf, L., Paelinck, H., De Smedt, A., Vandendriessche, F., De Vuyst, L., & Leroy, F. (2010b). Interactions between bacterial isolates from modified-atmosphere-packaged artisan-type cooked ham in view of the development of a bioprotective culture. Food Microbiology, 27, 1086–1094.PubMedCrossRefGoogle Scholar
- Vasilopoulos, C., De Vuyst, L., & Leroy, F. (2015). Shelf-life reduction as an emerging problem in cooked hams underlines the need for improved preservation strategies. Critical Reviews in Food Science and Nutrition, 55, 1425–1443.PubMedCrossRefGoogle Scholar
- Verbeke, W. (2015). Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Quality and Preference, 39, 147–155.CrossRefGoogle Scholar
- Vermeiren, L., Devlieghere, F., Vandekinderen, I., & Debevere, J. (2006). The interaction of the non-bacteriocinogenic Lactobacillus sakei 10A and lactocin S producing Lactobacillus sakei 148 towards Listeria monocytogenes on a model cooked ham. Food Microbiology, 23, 511–518.PubMedCrossRefGoogle Scholar
- Vihavainen, E. J., & Björkroth, K. J. (2007). Spoilage of value-added, high-oxygen modified-atmosphere packaged raw beef steaks by Leuconostoc gasicomitatum and Leuconostoc gelidum. International Journal of Food Microbiology, 119, 340–345.PubMedCrossRefGoogle Scholar
- Villani, F., Casaburi, A., Pennacchia, C., Filosa, L., Russo, F., & Ercolini, D. (2007). Microbial ecology of the Soppressata of Vallo di Diano, a traditional dry fermented sausage from Southern Italy, and in vitro and in situ selection of autochthonous starter cultures. Applied and Environmental Microbiology, 73, 5453–5463.PubMedPubMedCentralCrossRefGoogle Scholar
- Virgili, R., Simoncini, N., Roscani, T., Leggierei, M. C., Formenti, S., & Battilani, P. (2012). Biocontrol of Penicillium nordicum growth and ochratoxin A production by native yeasts of dry cured ham. Toxins, 4, 68–82.PubMedPubMedCentralCrossRefGoogle Scholar
- Vranken, L., Avermaete, T., Petalios, D., & Mathijs, E. (2014). Curbing global meat consumption. Emerging evidence of a second nutrition transition. Environmental Science and Policy, 39, 95–106.CrossRefGoogle Scholar
- Walter, J., Hertel, C., Tannock, G. W., Lis, C. M., Munro, K., & Hammes, W. P. (2001). Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 67, 2578–2585.PubMedPubMedCentralCrossRefGoogle Scholar
- Wang, X., Lin, X., Ouyang, Y. Y., Liu, J., Zhao, G., Pan, A., & Hu, F. B. (2015). Red and processed meat consumption and mortality: Dose-response meta-analysis of prospective cohort studies. Public Health Nutrition, 19, 893–905.PubMedCrossRefGoogle Scholar
- Wang, G. J., Wang, H. H., Han, Y. W., Xing, T., Ye, K. P., Xu, X. L., & Zhou, G. H. (2017). Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiology, 63, 139–146.PubMedCrossRefGoogle Scholar
- Wójciak, K. M., Libera, J., Stasiak, D. M., & Kolozyn-krajewska, D. (2016). Technological aspect of Lactobacillus acidophilus Bauer, Bifidobacterium animalis BB-12 and Lactobacillus rhamnosus LOCK900 use in dry-fermented pork neck and sausage. Journal of Food Processing and Preservation, 41, 1–9.Google Scholar
- Yalcin, S., Nizamlioclu, M., & Gurbuz, U. (2001). Fecal coliform contamination of beef carcasses during the slaughtering process. Journal of Food Safety, 21, 225–231.CrossRefGoogle Scholar
- Zhang, H., Kong, B., Xiong, Y. L., & Sun, X. (2009). Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4°C. Meat Science, 81, 686–692.PubMedCrossRefGoogle Scholar
- Zhang, C., Derrien, M., Levenez, F., Brazeilles, R., Ballal, S. A., Kim, J., Degivry, M. C., Quéré, G., Carault, P., van Hylckama Vlieg, J. E. T., Garrett, W. S., Doré, J., & Veiga, P. (2016). Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. The ISME Journal, 10, 2235–2245.PubMedPubMedCentralCrossRefGoogle Scholar
- Zhong, L., Zhang, X., & Covasa, M. (2014). Emerging roles of lactic acid bacteria in protection against colorectal cancer. World Journal of Gastroenterology, 20, 7878–7886.PubMedPubMedCentralCrossRefGoogle Scholar