Advertisement

The Aging Gut Microbiota

  • Erin S. Keebaugh
  • Leslie D. Williams
  • William W. JaEmail author
Chapter

Abstract

Researchers have detailed changes in host–intestinal microbe homeostasis in elderly humans, but it is not clear whether gut microbiota influence these changes, or if maintaining intestinal homeostasis would support overall health with age. Insight into age-related changes in hosts and their microbiota has been gained by studying vertebrate models such as mice, rats, and African turquoise killifish, and invertebrates, including Drosophila melanogaster and Caenorhabditis elegans. Studies using aged, germ-free models show that intestinal microbiota do not initiate all age-related pathologies, suggesting that host-specific changes may be a factor in declining host–intestinal microbe homeostasis with age. Although it is not clear how model-based host–intestinal microbe research applies to the elderly, understanding the interplay between aging hosts and gut microbiota will be critical toward the design of therapeutic interventions. Since research on aging microbiota systems is an emerging field, further developments may come through attempts to translate model findings to humans.

Keywords

Aging microbiome Inflammaging Intestinal permeability Healthy aging Age-associated dysbiosis Model organisms 

References

  1. Ahmed, M., Prasad, J., Gill, H., Stevenson, L., & Gopal, P. (2007). Impact of consumption of different levels of Bifidobacterium lactis HN019 on the intestinal microflora of elderly human subjects. The Journal of Nutrition, Health & Aging, 11(1), 26–31.Google Scholar
  2. Ahrne, S., Nobaek, S., Jeppsson, B., Adlerberth, I., Wold, A. E., & Molin, G. (1998). The normal Lactobacillus flora of healthy human rectal and oral mucosa. Journal of Applied Microbiology, 85(1), 88–94.PubMedCrossRefGoogle Scholar
  3. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H. B., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E. G., Wang, J., Guarner, F., Pedersen, O., de Vos, W. M., Brunak, S., Dore, J., Meta, H. I. T. C., Antolin, M., Artiguenave, F., Blottiere, H. M., Almeida, M., Brechot, C., Cara, C., Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Foerstner, K. U., Friss, C., van de Guchte, M., Guedon, E., Haimet, F., Huber, W., van Hylckama-Vlieg, J., Jamet, A., Juste, C., Kaci, G., Knol, J., Lakhdari, O., Layec, S., Le Roux, K., Maguin, E., Merieux, A., Melo Minardi, R., M’Rini, C., Muller, J., Oozeer, R., Parkhill, J., Renault, P., Rescigno, M., Sanchez, N., Sunagawa, S., Torrejon, A., Turner, K., Vandemeulebrouck, G., Varela, E., Winogradsky, Y., Zeller, G., Weissenbach, J., Ehrlich, S. D., & Bork, P. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174–180.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Backhed, F., Fraser, C. M., Ringel, Y., Sanders, M. E., Sartor, R. B., Sherman, P. M., Versalovic, J., Young, V., & Finlay, B. B. (2012). Defining a healthy human gut microbiome: Current concepts, future directions, and clinical applications. Cell Host & Microbe, 12(5), 611–622.CrossRefGoogle Scholar
  5. Bartosch, S., Fite, A., Macfarlane, G. T., & McMurdo, M. E. (2004). Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Applied and Environmental Microbiology, 70(6), 3575–3581.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Beausoleil, M., Fortier, N., Guenette, S., L’Ecuyer, A., Savoie, M., Franco, M., Lachaine, J., & Weiss, K. (2007). Effect of a fermented milk combining Lactobacillus acidophilus CL1285 and Lactobacillus casei in the prevention of antibiotic-associated diarrhea: A randomized, double-blind, placebo-controlled trial. Canadian Journal of Gastroenterology, 21(11), 732–736.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., Nikkila, J., Monti, D., Satokari, R., Franceschi, C., Brigidi, P., & De Vos, W. (2010). Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS One, 5(5), e10667.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Biagi, E., Candela, M., Fairweather-Tait, S., Franceschi, C., & Brigidi, P. (2012). Ageing of the human metaorganism: The microbial counterpart. Age, 34(1), 247–267.PubMedCrossRefGoogle Scholar
  9. Biagi, E., Franceschi, C., Rampelli, S., Severgnini, M., Ostan, R., Turroni, S., Consolandi, C., Quercia, S., Scurti, M., Monti, D., Capri, M., Brigidi, P., & Candela, M. (2016). Gut microbiota and extreme longevity. Current Biology, 26(11), 1480–1485.PubMedCrossRefGoogle Scholar
  10. Biagi, E., Rampelli, S., Turroni, S., Quercia, S., Candela, M., & Brigidi, P. (2017). The gut microbiota of centenarians: Signatures of longevity in the gut microbiota profile. Mechanisms of Ageing and Development, 165(Pt B), 180–184.PubMedCrossRefGoogle Scholar
  11. Bien, J., Palagani, V., & Bozko, P. (2013). The intestinal microbiota dysbiosis and Clostridium difficile infection: Is there a relationship with inflammatory bowel disease? Therapeutic Advances in Gastroenterology, 6(1), 53–68.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bing, X., Gerlach, J., Loeb, G., & Buchon, N. (2018). Nutrient-dependent impact of microbes on Drosophila suzukii development. MBio, 9(2), e02199.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Broderick, N. A., Buchon, N., & Lemaitre, B. (2014). Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology. MBio, 5(3), e01117–e01114.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buchon, N., Osman, D., David, F. P., Fang, H. Y., Boquete, J. P., Deplancke, B., & Lemaitre, B. (2013). Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Reports, 3(5), 1725–1738.PubMedCrossRefGoogle Scholar
  15. Buford, T. W. (2017). (Dis)Trust your gut: The gut microbiome in age-related inflammation, health, and disease. Microbiome, 5(1), 80.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Byri, S., Misra, T., Syed, Z. A., Batz, T., Shah, J., Boril, L., Glashauser, J., Aegerter-Wilmsen, T., Matzat, T., Moussian, B., Uv, A., & Luschnig, S. (2015). The triple-repeat protein anakonda controls epithelial tricellular junction formation in Drosophila. Developmental Cell, 33(5), 535–548.PubMedCrossRefGoogle Scholar
  17. Candela, M., Biagi, E., Maccaferri, S., Turroni, S., & Brigidi, P. (2012). Intestinal microbiota is a plastic factor responding to environmental changes. Trends in Microbiology, 20(8), 385–391.PubMedCrossRefGoogle Scholar
  18. Candela, M., Biagi, E., Brigidi, P., O’Toole, P. W., & De Vos, W. M. (2014). Maintenance of a healthy trajectory of the intestinal microbiome during aging: A dietary approach. Mechanisms of Ageing and Development, 136–137, 70–75.PubMedCrossRefGoogle Scholar
  19. Cao, Y., Shen, J., & Ran, Z. H. (2014). Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: A meta-analysis and systematic review of the literature. Gastroenterology Research and Practice, 2014, 872725.Google Scholar
  20. Charlesworth, C. J., Smit, E., Lee, D. S. H., Alramadhan, F., & Odden, M. C. (2015). Polypharmacy among adults aged 65 years and older in the United States: 1988-2010. Journals of Gerontology Series A-Biological Sciences and Medical Sciences, 70(8), 989–995.CrossRefGoogle Scholar
  21. Chaston, J. M., Dobson, A. J., Newell, P. D., & Douglas, A. E. (2016). Host genetic control of the microbiota mediates the Drosophila nutritional phenotype. Applied and Environmental Microbiology, 82(2), 671–679.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Claesson, M. J., Cusack, S., O’Sullivan, O., Greene-Diniz, R., de Weerd, H., Flannery, E., Marchesi, J. R., Falush, D., Dinan, T., Fitzgerald, G., Stanton, C., van Sinderen, D., O’Connor, M., Harnedy, N., O’Connor, K., Henry, C., O’Mahony, D., Fitzgerald, A. P., Shanahan, F., Twomey, C., Hill, C., Ross, R. P., & O’Toole, P. W. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4586–4591.PubMedCrossRefGoogle Scholar
  23. Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O’Connor, E. M., Cusack, S., Harris, H. M. B., Coakley, M., Lakshminarayanan, B., O’Sullivan, O., Fitzgerald, G. F., Deane, J., O’Connor, M., Harnedy, N., O’Connor, K., O’Mahony, D., van Sinderen, D., Wallace, M., Brennan, L., Stanton, C., Marchesi, J. R., Fitzgerald, A. P., Shanahan, F., Hill, C., Ross, R. P., & O’Toole, P. W. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature, 488(7410), 178–184.PubMedCrossRefGoogle Scholar
  24. Clark, R. I., Salazar, A., Yamada, R., Fitz-Gibbon, S., Morselli, M., Alcaraz, J., Rana, A., Rera, M., Pellegrini, M., Ja, W. W., & Walker, D. W. (2015). Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality. Cell Reports, 12(10), 1656–1667.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Clements, S. J., & Carding, S. R. (2018). Diet, the intestinal microbiota, and immune health in aging. Critical Reviews in Food Science and Nutrition, 58(4), 651–661.PubMedCrossRefGoogle Scholar
  26. Collado, M. C., Rautava, S., Aakko, J., Isolauri, E., & Salminen, S. (2016). Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Scientific Reports, 6, 23129.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Conley, M. N., Wong, C. P., Duyck, K. M., Hord, N., Ho, E., & Sharpton, T. J. (2016). Aging and serum MCP-1 are associated with gut microbiome composition in a murine model. PeerJ, 4, e1854.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Costello, E. K., Lauber, C. L., Hamady, M., Fierer, N., Gordon, J. I., & Knight, R. (2009). Bacterial community variation in human body habitats across space and time. Science, 326(5960), 1694–1697.PubMedPubMedCentralCrossRefGoogle Scholar
  29. de Vries, M. C., Vaughan, E. E., Kleerebezem, M., & de Vos, W. M. (2006). Lactobacillus plantarum- survival, functional and potential probiotic properties in the human intestinal tract. International Dairy Journal, 16(9), 1018–1028.CrossRefGoogle Scholar
  30. de Goffau, M. C., Lager, S., Sovio, U., Gaccioli, F., Cook, E., Peacock, S. J., Parkhill, J., Charnock-Jones, D. S., Smith, G. C. S. (2019). Human placenta has no microbiome but can contain potential pathogens. Nature, 572(7769), 329–334.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dambroise, E., Monnier, L., Ruisheng, L., Aguilaniu, H., Joly, J. S., Tricoire, H., & Rera, M. (2016). Two phases of aging separated by the Smurf transition as a public path to death. Scientific Reports, 6, 23523.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Darby, T. M., & Jones, R. M. (2017). Beneficial influences of Lactobacillus plantarum on human health and disease. In Y. Ringel & W. A. Walker (Eds.), The microbiota in gastrointestinal pathophysiology (pp. 109–117). Boston: Academic.CrossRefGoogle Scholar
  33. David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dominy, S. S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., Nguyen, M., Haditsch, U., Raha, D., Griffin, C., Holsinger, L. J., Arastu-Kapur, S., Kaba, S., Lee, A., Ryder, M. I., Potempa, B., Mydel, P., Hellvard, A., Adamowicz, K., Hasturk, H., Walker, G. D., Reynolds, E. C., Faull, R. L. M., Curtis, M. A., Dragunow, M., & Potempa, J. (2019). Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances, 5(1), eaau3333.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Douglas, A. E. (2018). Which experimental systems should we use for human microbiome science? PLoS Biology, 16(3), e2005245.  https://doi.org/10.1371/journal.pbio.2005245.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Duncan, S. H., & Flint, H. J. (2013). Probiotics and prebiotics and health in ageing populations. Maturitas, 75(1), 44–50.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Elderman, M., Sovran, B., Hugenholtz, F., Graversen, K., Huijskes, M., Houtsma, E., Belzer, C., Boekschoten, M., de Vos, P., Dekker, J., Wells, J., & Faas, M. (2017). The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice. PLoS One, 12(9), e0184274.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fishman, J. E., Levy, G., Alli, V., Sheth, S., Lu, Q., & Deitch, E. A. (2013). Oxidative modification of the intestinal mucus layer is a critical but unrecognized component of trauma hemorrhagic shock-induced gut barrier failure. American Journal of Physiology. Gastrointestinal and Liver Physiology, 304(1), G57–G63.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Franceschi, C., & Campisi, J. (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69(Suppl 1), S4–S9.PubMedCrossRefGoogle Scholar
  40. Franceschi, C., Bonafe, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., & De Benedictis, G. (2000). Inflamm-aging. An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences, 908, 244–254.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., Panouraia, M. P., Invidia, L., Celani, L., Scurti, M., Cevenini, E., Castellani, G. C., & Salvioli, S. (2007). Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mechanisms of Ageing and Development, 128(1), 92–105.PubMedCrossRefGoogle Scholar
  42. Franceschi, C., Ostan, R., & Santoro, A. (2018). Nutrition and Inflammation: Are centenarians similar to individuals on calorie-restricted diets? Annual Review of Nutrition, 38, 329–356.PubMedCrossRefGoogle Scholar
  43. Fransen, F., van Beek, A. A., Borghuis, T., Aidy, S. E., Hugenholtz, F., van der Gaast-de Jongh, C., Savelkoul, H. F. J., De Jonge, M. I., Boekschoten, M. V., Smidt, H., Faas, M. M., & de Vos, P. (2017). Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Frontiers in Immunology, 8, 1385.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fukunaga, A., Uematsu, H., & Sugimoto, K. (2005). Influences of aging on taste perception and oral somatic sensation. The Journals of Gerontology: Series A, 60(1), 109–113.CrossRefGoogle Scholar
  45. Fukushima, Y., Miyaguchi, S., Yamano, T., Kaburagi, T., Iino, H., Ushida, K., & Sato, K. (2007). Improvement of nutritional status and incidence of infection in hospitalised, enterally fed elderly by feeding of fermented milk containing probiotic Lactobacillus johnsonii La1 (NCC533). The British Journal of Nutrition, 98(5), 969–977.PubMedCrossRefGoogle Scholar
  46. Garcia-Gonzalez, A. P., Ritter, A. D., Shrestha, S., Andersen, E. C., Yilmaz, L. S., & Walhout, A. J. M. (2017). Bacterial Metabolism Affects the C. elegans Response to Cancer Chemotherapeutics. Cell, 169(3), 431–441. e438.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gelino, S., Chang, J. T., Kumsta, C., She, X., Davis, A., Nguyen, C., Panowski, S., & Hansen, M. (2016). Intestinal autophagy improves healthspan and longevity in C. elegans during dietary restriction. PLOS Genetics, 12(7), e1006135.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gill, H. S., Rutherfurd, K. J., Cross, M. L., & Gopal, P. K. (2001). Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. The American Journal of Clinical Nutrition, 74(6), 833–839.PubMedCrossRefGoogle Scholar
  49. Guillemard, E., Tondu, F., Lacoin, F., & Schrezenmeir, J. (2010). Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. The British Journal of Nutrition, 103(1), 58–68.PubMedCrossRefGoogle Scholar
  50. Guo, L., Karpac, J., Tran, S. L., & Jasper, H. (2014). PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell, 156(1–2), 109–122.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hallstrom, M., Eerola, E., Vuento, R., Janas, M., & Tammela, O. (2004). Effects of mode of delivery and necrotising enterocolitis on the intestinal microflora in preterm infants. European Journal of Clinical Microbiology & Infectious Diseases, 23(6), 463–470.CrossRefGoogle Scholar
  52. Han, B., Sivaramakrishnan, P., Lin, C. C. J., Neve, I. A. A., He, J. Q., Tay, L. W. R., Sowa, J. N., Sizovs, A., Du, G. W., Wang, J., Herman, C., & Wang, M. C. (2017). Microbial genetic composition tunes host longevity. Cell, 169(7), 1249–1262.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hayashi, H., Sakamoto, M., Kitahara, M., & Benno, Y. (2003). Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiology and Immunology, 47(8), 557–570.PubMedCrossRefGoogle Scholar
  54. Henderson, B., & Nibali, L. (2016). The human microbiota and chronic disease: Dysbiosis as a cause of human pathology. Hoboken, NJ: Wiley Blackwell.Google Scholar
  55. Hickson, M., D’Souza, A. L., Muthu, N., Rogers, T. R., Want, S., Rajkumar, C., & Bulpitt, C. J. (2007). Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: Randomised double blind placebo controlled trial. BMJ, 335(7610), 80–83.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(8), 506–514.CrossRefGoogle Scholar
  57. Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268–1273.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hopkins, M. J., & Macfarlane, G. T. (2002). Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. Journal of Medical Microbiology, 51(5), 448–454.PubMedCrossRefGoogle Scholar
  59. Hopkins, M. J., Sharp, R., & Macfarlane, G. T. (2001). Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut, 48(2), 198–205.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214.Google Scholar
  61. Jackson, M. A., Jeffery, I. B., Beaumont, M., Bell, J. T., Clark, A. G., Ley, R. E., O’Toole, P. W., Spector, T. D., & Steves, C. J. (2016). Signatures of early frailty in the gut microbiota. Genome Medicine, 8(1), 8.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jeffery, I. B., Lynch, D. B., & O’Toole, P. W. (2016). Composition and temporal stability of the gut microbiota in older persons. The ISME Journal, 10(1), 170–182.PubMedCrossRefGoogle Scholar
  63. Jimenez, E., Fernandez, L., Marin, M. L., Martin, R., Odriozola, J. M., Nueno-Palop, C., Narbad, A., Olivares, M., Xaus, J., & Rodriguez, J. M. (2005). Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Current Microbiology, 51(4), 270–274.PubMedCrossRefGoogle Scholar
  64. Johansson, M. E. (2014). Mucus layers in inflammatory bowel disease. Inflammatory Bowel Diseases, 20(11), 2124–2131.PubMedCrossRefGoogle Scholar
  65. Johansson, M. L., Molin, G., Jeppsson, B., Nobaek, S., Ahrne, S., & Bengmark, S. (1993). Administration of different Lactobacillus strains in fermented oatmeal soup: In vivo colonization of human intestinal mucosa and effect on the indigenous flora. Applied and Environmental Microbiology, 59(1), 15–20.PubMedPubMedCentralGoogle Scholar
  66. Johansson, M. E. V., Phillipson, M., Petersson, J., Velcich, A., Holm, L., & Hansson, G. C. (2008). The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 15064–15069.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Johansson, M. E. V., Larsson, J. M. H., & Hansson, G. C. (2011). The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proceedings of the National Academy of Sciences of the United States of America, 108, 4659–4665.PubMedCrossRefGoogle Scholar
  68. Jones, C., Badger, S. A., Regan, M., Clements, B. W., Diamond, T., Parks, R. W., & Taylor, M. A. (2013). Modulation of gut barrier function in patients with obstructive jaundice using probiotic LP299v. European Journal of Gastroenterology & Hepatology, 25(12), 1424–1430.CrossRefGoogle Scholar
  69. Keebaugh, E. S., & Ja, W. W. (2016). Microbes without borders: Decompartmentalization of the aging gut. Cell Host & Microbe, 19(2), 133–135.CrossRefGoogle Scholar
  70. Keebaugh, E. S., Yamada, R., Obadia, B., Ludington, W. B., & Ja, W. W. (2018). Microbial quantity impacts Drosophila nutrition, development, and lifespan. iScience, 4, 247–259.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kim, S., & Jazwinski, S. M. (2018). The gut microbiota and healthy aging: A mini-review. Gerontology, 64(6), 513–520.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Klarin, B., Johansson, M. L., Molin, G., Larsson, A., & Jeppsson, B. (2005). Adhesion of the probiotic bacterium Lactobacillus plantarum 299v onto the gut mucosa in critically ill patients: A randomised open trial. Critical Care, 9(3), R285–R293.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M., Fiers, M. W. E. J., Stiekema, W., Lankhorst, R. M. K., Bron, P. A., Hoffer, S. M., Groot, M. N. N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W. M., & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1990–1995.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight, R., Angenent, L. T., & Ley, R. E. (2011). Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4578–4585.PubMedCrossRefGoogle Scholar
  75. Kong, F., Hua, Y., Zeng, B., Ning, R., Li, Y., & Zhao, J. (2016). Gut microbiota signatures of longevity. Current Biology, 26(18), R832–R833.PubMedCrossRefGoogle Scholar
  76. Kong, F., Deng, F., Li, Y., & Zhao, J. (2018). Identification of gut microbiome signatures associated with longevity provides a promising modulation target for healthy aging. Gut Microbes, 10(2), 210–215.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kumar, M., Babaei, P., Ji, B., & Nielsen, J. (2016). Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging, 4(1), 3–16.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lahtinen, S. J., Tammela, L., Korpela, J., Parhiala, R., Ahokoski, H., Mykkanen, H., & Salminen, S. J. (2009). Probiotics modulate the bifidobacterium microbiota of elderly nursing home residents. Age (Dordrecht, Netherlands), 31(1), 59–66.CrossRefGoogle Scholar
  79. Lee, G. C., Daniels, K., Lawson, K. A., Attridge, R. T., Lewis, J., & Frei, C. R. (2013). Age-based outpatient antibiotic prescribing in the United States from 2000 to 2010. Value in Health, 16(3), A78–A78.CrossRefGoogle Scholar
  80. Lee, G. C., Reveles, K. R., Attridge, R. T., Lawson, K. A., Mansi, I. A., Lewis, J. S., & Frei, C. R. (2014). Outpatient antibiotic prescribing in the United States: 2000 to 2010. BMC Medicine, 12, 96.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Li, H., Qi, Y., & Jasper, H. (2016). Preventing age-related decline of gut compartmentalization limits microbiota dysbiosis and extends lifespan. Cell Host & Microbe, 19(2), 240–253.CrossRefGoogle Scholar
  82. Lim, C. J., Kong, D. C. M., & Stuart, R. L. (2014). Reducing inappropriate antibiotic prescribing in the residential care setting: Current perspectives. Clinical Interventions in Aging, 9, 165–177.PubMedPubMedCentralGoogle Scholar
  83. Lloyd-Price, J., Abu-Ali, G., & Huttenhower, C. (2016). The healthy human microbiome. Genome Medicine, 8(1), 51.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lovat, L. B. (1996). Age related changes in gut physiology and nutritional status. Gut, 38(3), 306–309.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415), 220–230.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lu, M., & Wang, Z. (2018). Linking gut microbiota to aging process: A new target for anti-aging. Food Science and Human Wellness, 7(2), 111–119.CrossRefGoogle Scholar
  87. Macpherson, A. J., & Harris, N. L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nature Reviews. Immunology, 4(6), 478–485.PubMedCrossRefGoogle Scholar
  88. Magrone, T., & Jirillo, E. (2013). The interaction between gut microbiota and age-related changes in immune function and inflammation. Immunity & Ageing, 10(1), 31.CrossRefGoogle Scholar
  89. Malamitsi-Puchner, A., Protonotariou, E., Boutsikou, T., Makrakis, E., Sarandakou, A., & Creatsas, G. (2005). The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period. Early Human Development, 81(4), 387–392.PubMedCrossRefGoogle Scholar
  90. Man, A. L., Gicheva, N., & Nicoletti, C. (2014). The impact of ageing on the intestinal epithelial barrier and immune system. Cellular Immunology, 289(1–2), 112–118.PubMedCrossRefGoogle Scholar
  91. Marianes, A., & Spradling, A. C. (2013). Physiological and stem cell compartmentalization within the Drosophila midgut. eLife, 2, e00886.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mariat, D., Firmesse, O., Levenez, F., Guimaraes, V. D., Sokol, H., Dore, J., Corthier, G., & Furet, J. P. (2009). The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology, 9, 123.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Martin, R., Makino, H., Yavuz, A. C., Ben-Amor, K., Roelofs, M., Ishikawa, E., Kubota, H., Swinkels, S., Sakai, T., Oishi, K., Kushiro, A., & Knol, J. (2016). Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One, 11(6), e0158498.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Matsumoto, M., Kurihara, S., Kibe, R., Ashida, H., & Benno, Y. (2011). Longevity in mice Is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One, 6(8), e23652.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Matsuo, K., Ota, H., Akamatsu, T., Sugiyama, A., & Katsuyama, T. (1997). Histochemistry of the surface mucous gel layer of the human colon. Gut, 40(6), 782–789.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Maynard, C., & Weinkove, D. (2018). The gut microbiota and ageing. Sub-Cellular Biochemistry, 90, 351–371.PubMedCrossRefGoogle Scholar
  97. McNaught, C. E., Woodcock, N. P., Anderson, A. D., & MacFie, J. (2005). A prospective randomised trial of probiotics in critically ill patients. Clinical Nutrition, 24(2), 211–219.PubMedCrossRefGoogle Scholar
  98. Metchnikoff, E. (1908). The prolongation of life: Optimistic studies. New York and London: GP Putnam’s Sons.Google Scholar
  99. Miquel, S., Martin, R., Rossi, O., Bermudez-Humaran, L. G., Chatel, J. M., Sokol, H., Thomas, M., Wells, J. M., & Langella, P. (2013). Faecalibacterium prausnitzii and human intestinal health. Current Opinion in Microbiology, 16(3), 255–261.PubMedCrossRefGoogle Scholar
  100. Mueller, S., Saunier, K., Hanisch, C., Norin, E., Alm, L., Midtvedt, T., Cresci, A., Silvi, S., Orpianesi, C., Verdenelli, M. C., Clavel, T., Koebnick, C., Zunft, H.-J. F., Doré, J., & Blaut, M. (2006). Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Applied and Environmental Microbiology, 72(2), 1027–1033.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nagpal, R., Mainali, R., Ahmadi, S., Wang, S., Singh, R., Kavanagh, K., Kitzman, D. W., Kushugulova, A., Marotta, F., & Yadav, H. (2018). Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and Healthy Aging, 4(4), 267–285.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Negele, K., Heinrich, J., Borte, M., von Berg, A., Schaaf, B., Lehmann, I., Wichmann, H. E., Bolte, G., & L. S. Group. (2004). Mode of delivery and development of atopic disease during the first 2 years of life. Pediatric Allergy and Immunology, 15(1), 48–54.PubMedCrossRefGoogle Scholar
  103. Nguyen, T. L. A., Vieira-Silva, S., Liston, A., & Raes, J. (2015). How informative is the mouse for human gut microbiota research? Disease Models & Mechanisms, 8(1), 1–16.CrossRefGoogle Scholar
  104. O’Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Reports, 7(7), 688–693.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Obadia, B., Guvener, Z. T., Zhang, V., Ceja-Navarro, J. A., Brodie, E. L., Ja, W. W., & Ludington, W. B. (2017). Probabilistic invasion underlies natural gut microbiome stability. Current Biology, 27(13), 1999–2006. e1998.PubMedCrossRefGoogle Scholar
  106. Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J. Z., Abe, F., & Osawa, R. (2016). Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiology, 16, 90.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ouwehand, A. C., Bergsma, N., Parhiala, R., Lahtinen, S., Gueimonde, M., Finne-Soveri, H., Strandberg, T., Pitkala, K., & Salminen, S. (2008). Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunology and Medical Microbiology, 53(1), 18–25.PubMedCrossRefGoogle Scholar
  108. Overend, G., Luo, Y., Henderson, L., Douglas, A. E., Davies, S. A., & Dow, J. A. (2016). Molecular mechanism and functional significance of acid generation in the Drosophila midgut. Scientific Reports, 6, 27242.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Pais, I. S., Valente, R. S., Sporniak, M., & Teixeira, L. (2018). Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biology, 16(7), e2005710.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., & Brown, P. O. (2007). Development of the human infant intestinal microbiota. PLoS Biology, 5(7), e177.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Perez-Munoz, M. E., Arrieta, M. C., Ramer-Tait, A. E., & Walter, J. (2017). A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome, 5(1), 48.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Qin, J. J., Li, R. Q., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J. H., Xu, J. M., Li, S. C., Li, D. F., Cao, J. J., Wang, B., Liang, H. Q., Zheng, H. S., Xie, Y. L., Tap, J., Lepage, P., Bertalan, M., Batto, J. M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H. M., Yu, C., Li, S. T., Jian, M., Zhou, Y., Li, Y. R., Zhang, X. Q., Li, S. G., Qin, N., Yang, H. M., Wang, J., Brunak, S., Dore, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Bork, P., Ehrlich, S. D., Wang, J., & MetaHIT Consortium (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59–65.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Qin, X. F., Sheth, S. U., Sharpe, S. M., Dong, W., Lu, Q., Xu, D. Z., & Deitch, E. A. (2011). The mucus layer Is critical in protecting against ischemia-reperfusion-mediated gut injury and in the restitution of gut barrier function. Shock, 35(3), 275–281.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Rampelli, S., Candela, M., Turroni, S., Biagi, E., Collino, S., Franceschi, C., O’Toole, P. W., & Brigidi, P. (2013). Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY), 5(12), 902–912.CrossRefGoogle Scholar
  115. Rautava, S., Luoto, R., Salminen, S., & Isolauri, E. (2012). Microbial contact during pregnancy, intestinal colonization and human disease. Nature Reviews. Gastroenterology & Hepatology, 9(10), 565–576.CrossRefGoogle Scholar
  116. Rehman, T. (2012). Role of the gut microbiota in age-related chronic inflammation. Endocrine, Metabolic & Immune Disorders Drug Targets, 12(4), 361–367.CrossRefGoogle Scholar
  117. Rera, M., Clark, R. I., & Walker, D. W. (2012). Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 109(52), 21528–21533.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Rera, M., Vallot, C., & Lefrancois, C. (2018). The Smurf transition: New insights on ageing from end-of-life studies in animal models. Current Opinion in Oncology, 30(1), 38–44.PubMedCrossRefGoogle Scholar
  119. Resnik-Docampo, M., Koehler, C. L., Clark, R. I., Schinaman, J. M., Sauer, V., Wong, D. M., Lewis, S., D’Alterio, C., Walker, D. W., & Jones, D. L. (2017). Tricellular junctions regulate intestinal stem cell behaviour to maintain homeostasis. Nature Cell Biology, 19(1), 52–59.PubMedCrossRefGoogle Scholar
  120. Resnik-Docampo, M., Sauer, V., Schinaman, J. M., Clark, R. I., Walker, D. W., & Jones, D. L. (2018). Keeping it tight: The relationship between bacterial dysbiosis, septate junctions, and the intestinal barrier in Drosophila. Fly (Austin), 12(1), 34–40.CrossRefGoogle Scholar
  121. Riaz Rajoka, M. S., Zhao, H., Li, N., Lu, Y., Lian, Z., Shao, D., Jin, M., Li, Q., Zhao, L., & Shi, J. (2018). Origination, change, and modulation of geriatric disease-related gut microbiota during life. Applied Microbiology and Biotechnology, 102(19), 8275–8289.PubMedCrossRefGoogle Scholar
  122. Ridley, E. V., Wong, A. C., Westmiller, S., & Douglas, A. E. (2012). Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS One, 7(5), e36765.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Rodriguez, J. M., Murphy, K., Stanton, C., Ross, R. P., Kober, O. I., Juge, N., Avershina, E., Rudi, K., Narbad, A., Jenmalm, M. C., Marchesi, J. R., & Collado, M. C. (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease, 26, 26050.PubMedCrossRefGoogle Scholar
  124. Rosen, C. E., & Palm, N. W. (2017). Functional classification of the gut microbiota: The key to cracking the microbiota composition code: Functional classifications of the gut microbiota reveal previously hidden contributions of indigenous gut bacteria to human health and disease. BioEssays, 39(12), 1700032.Google Scholar
  125. Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P. I., Godneva, A., Kalka, I. N., Bar, N., Shilo, S., Lador, D., Vila, A. V., Zmora, N., Pevsner-Fischer, M., Israeli, D., Kosower, N., Malka, G., Wolf, B. C., Avnit-Sagi, T., Lotan-Pompan, M., Weinberger, A., Halpern, Z., Carmi, S., Fu, J., Wijmenga, C., Zhernakova, A., Elinav, E., & Segal, E. (2018). Environment dominates over host genetics in shaping human gut microbiota. Nature, 555, 210–215.PubMedCrossRefGoogle Scholar
  126. Rutayisire, E., Huang, K., Liu, Y., & Tao, F. (2016). The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterology, 16(1), 86.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Salazar, A. M., Resnik-Docampo, M., Ulgherait, M., Clark, R. I., Shirasu-Hiza, M., Jones, D. L., & Walker, D. W. (2018). Intestinal snakeskin limits microbial dysbiosis during aging and promotes longevity. iScience, 9, 229–243.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Santoro, A., Ostan, R., Candela, M., Biagi, E., Brigidi, P., Capri, M., & Franceschi, C. (2018). Gut microbiota changes in the extreme decades of human life: A focus on centenarians. Cellular and Molecular Life Sciences, 75(1), 129–148.PubMedCrossRefGoogle Scholar
  129. Sarkar, D., & Fisher, P. B. (2006). Molecular mechanisms of aging-associated inflammation. Cancer Letters, 236(1), 13–23.PubMedCrossRefGoogle Scholar
  130. Scott, T. A., Quintaneiro, L. M., Norvaisas, P., Lui, P. P., Wilson, M. P., Leung, K. Y., Herrera-Dominguez, L., Sudiwala, S., Pessia, A., Clayton, P. T., Bryson, K., Velagapudi, V., Mills, P. B., Typas, A., Greene, N. D. E., & Cabreiro, F. (2017). Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C. elegans. Cell, 169(3), 442–456. e418.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Smith, P., Willemsen, D., Popkes, M., Metge, F., Gandiwa, E., Reichard, M., et al. (2017). Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. Elife. 6.Google Scholar
  132. Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L. G., Gratadoux, J.-J., Blugeon, S., Bridonneau, C., Furet, J.-P., Corthier, G., Grangette, C., Vasquez, N., Pochart, P., Trugnan, G., Thomas, G., Blottière, H. M., Doré, J., Marteau, P., Seksik, P., & Langella, P. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16731–16736.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Suryavanshi, M. V., Paul, D., Doijad, S. P., Bhute, S. S., Hingamire, T. B., Gune, R. P., & Shouche, Y. S. (2017). Draft genome sequence of Lactobacillus plantarum strains E2C2 and E2C5 isolated from human stool culture. Standards in Genomic Sciences, 12, 15.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Swidsinski, A., Loening-Baucke, V., Theissig, F., Engelhardt, H., Bengmark, S., Koch, S., Lochs, H., & Dorffel, Y. (2007a). Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut, 56(3), 343–350.PubMedCrossRefGoogle Scholar
  135. Swidsinski, A., Sydora, B. C., Doerffel, Y., Loening-Baucke, V., Vaneechoutte, M., Lupicki, M., Scholze, J., Lochs, H., & Dieleman, L. A. (2007b). Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflammatory Bowel Diseases, 13(8), 963–970.PubMedCrossRefGoogle Scholar
  136. Tamburini, S., Shen, N., Wu, H. C., & Clemente, J. C. (2016). The microbiome in early life: Implications for health outcomes. Nature Medicine, 22(7), 713–722.PubMedCrossRefGoogle Scholar
  137. Thevaranjan, N., Puchta, A., Schulz, C., Naidoo, A., Szamosi, J. C., Verschoor, C. P., Loukov, D., Schenck, L. P., Jury, J., Foley, K. P., Schertzer, J. D., Larche, M. J., Davidson, D. J., Verdu, E. F., Surette, M. G., & Bowdish, D. M. E. (2017). Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host & Microbe, 21(4), 455–466. e454.CrossRefGoogle Scholar
  138. Tran, L., & Greenwood-Van Meerveld, B. (2013). Age-Associated Remodeling of the Intestinal Epithelial Barrier. Journals of Gerontology Series A-Biological Sciences and Medical Sciences, 68(9), 1045–1056.CrossRefGoogle Scholar
  139. Tricoire, H., & Rera, M. (2015). A new, discontinuous 2 phases of aging model: Lessons from Drosophila melanogaster. PLoS One, 10(11), e0141920.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Turchet, P., Laurenzano, M., Auboiron, S., & Antoine, J. M. (2003). Effect of fermented milk containing the probiotic Lactobacillus casei DN-114001 on winter infections in free-living elderly subjects: A randomised, controlled pilot study. The Journal of Nutrition, Health & Aging, 7(2), 75–77.Google Scholar
  141. Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I. (2007). The human microbiome project. Nature, 449(7164), 804–810.PubMedPubMedCentralCrossRefGoogle Scholar
  142. van Beek, A. A., Sovran, B., Hugenholtz, F., Meijer, B., Hoogerland, J. A., Mihailova, V., van der Ploeg, C., Belzer, C., Boekschoten, M. V., Hoeijmakers, J. H., Vermeij, W. P., de Vos, P., Wells, J. M., Leenen, P. J., Nicoletti, C., Hendriks, R. W., & Savelkoul, H. F. (2016). Supplementation with Lactobacillus plantarum WCFS1 prevents decline of mucus barrier in colon of accelerated aging Ercc1(-/Delta7) mice. Frontiers in Immunology, 7, 408.PubMedPubMedCentralGoogle Scholar
  143. van Tongeren, S. P., Slaets, J. P., Harmsen, H. J., & Welling, G. W. (2005). Fecal microbiota composition and frailty. Applied and Environmental Microbiology, 71(10), 6438–6442.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Varum, F. J. O., Veiga, F., Sousa, J. S., & Basit, A. W. (2012). Mucus thickness in the gastrointestinal tract of laboratory animals. The Journal of Pharmacy and Pharmacology, 64(2), 218–227.PubMedCrossRefGoogle Scholar
  145. Vesa, T., Pochart, P., & Marteau, P. (2000). Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract. Alimentary Pharmacology & Therapeutics, 14(6), 823–828.CrossRefGoogle Scholar
  146. Walker, A. (2007). Genome watch—Say hello to our little friends. Nature Reviews. Microbiology, 5(8), 572–573.PubMedCrossRefGoogle Scholar
  147. Wong, A. C., Dobson, A. J., & Douglas, A. E. (2014). Gut microbiota dictates the metabolic response of Drosophila to diet. The Journal of Experimental Biology, 217(Pt 11), 1894–1901.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Woodmansey, E. J. (2007). Intestinal bacteria and ageing. Journal of Applied Microbiology, 102(5), 1178–1186.PubMedCrossRefGoogle Scholar
  149. Woodmansey, E. J., McMurdo, M. E., Macfarlane, G. T., & Macfarlane, S. (2004). Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Applied and Environmental Microbiology, 70(10), 6113–6122.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., & Lewis, J. D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science, 334(6052), 105–108.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Yamada, R., Deshpande, S. A., Bruce, K. D., Mak, E. M., & Ja, W. W. (2015). Microbes promote amino acid harvest to rescue undernutrition in Drosophila. Cell Rep, 10(6), 865–872.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., Heath, A. C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J. G., Lozupone, C. A., Lauber, C., Clemente, J. C., Knights, D., Knight, R., & Gordon, J. I. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222–227.PubMedPubMedCentralCrossRefGoogle Scholar
  153. You, J. L., & Yaqoob, P. (2012). Evidence of immunomodulatory effects of a novel probiotic, Bifidobacterium longum bv. infantis CCUG 52486. FEMS Immunology and Medical Microbiology, 66(3), 353–362.PubMedCrossRefGoogle Scholar
  154. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., & Goodman, A. L. (2019). Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science, 363(6427), eaat9931.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erin S. Keebaugh
    • 1
  • Leslie D. Williams
    • 1
  • William W. Ja
    • 1
    Email author
  1. 1.Department of NeuroscienceCenter on Aging, The Scripps Research InstituteJupiterUSA

Personalised recommendations