• Juan C. Vallejo
  • Miguel A. F. Sanjuan
Part of the Springer Series in Synergetics book series (SSSYN)


Dynamical systems describe magnitudes evolving in time according to deterministic rules. These magnitudes may evolve in time towards some final state, depending on the initial conditions and on the specific choice of parameters.


  1. 1.
    Aguirre, J., Viana R.L., Sanjuan M.A.F.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos. An introduction to dynamical systems, p. 383. Springer, New York (1996)Google Scholar
  3. 3.
    Athanassoula, E., Romero-Gómez, M., Bosma, A., Masdemont, J.J.: Rings and spirals in barred galaxies – III. Further comparisons and links to observations. Mon. Not. R. Astron. Soc. 407, 1433 (2010)Google Scholar
  4. 4.
    Buljan, H., Paar, V.: Many-hole interactions and the average lifetimes of chaotic transients that precede controlled periodic motion. Phys. Rev. E 63, 066205 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Contopoulos, G.: Orbits in highly perturbed dynamical systems. I. Periodic orbits. Astron. J. 75, 96 (1970)ADSMathSciNetGoogle Scholar
  6. 6.
    Contopoulos, G., Grousousakou, E., Voglis, N.: Invariant spectra in Hamiltonian systems. Astron. Astrophys. 304, 374 (1995)ADSGoogle Scholar
  7. 7.
    Davidchack, R.L., Lai, Y.C.: Characterization of transition to chaos with multiple positive Lyapunov exponents by unstable periodic orbit. Phys. Lett. A 270, 308 (2000)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Daza, A., Wagemakers, A., Sanjuan, M.A.F., Yorke, J.A.: Testing for Basins of Wada. Basin entropy: a new tool to analyze uncertainty in dynamical systems. Sci. Rep. 6, 31416 (2016)Google Scholar
  9. 9.
    Do, Y., Lai, Y.C.: Statistics of shadowing time in nonhyperbolic chaotic systems with unstable dimension variability. Phys. Rev. E 69, 16213 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Grassberger, P., Badii, R., Politi, A.: Scaling laws for invariant measures on hyperbolic and non-hyperbolic attractors. J. Stat. Phys. 51, 135 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    Grebogi, C., Kostelich, E., Ott, E., Yorke, J.A.: Multi-dimensioned intertwined basin boundaries: basin structure of the kicked double rotor. Phys. D 25, 347 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hunt B.R., Ott E., Rosa, E.: Sporadically fractal basin boundaries of chaotic systems. Phys. Rev. Lett. 82, 3597 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Kapitaniak, T.: Distribution of transient Lyapunov exponents of quasiperiodically forced systems. Prog. Theor. Phys. 93, 831 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    Kottos, T., Politi, A., Izrailev F.M., Ruffo S.: Scaling properties of Lyapunov spectra for the band random matrix model. Phys. Rev. E. 53, 6 (1996)CrossRefGoogle Scholar
  15. 15.
    McDonald, S.W., Grebogi, C., Ott E., Yorke, J.A.: Fractal basin boundaries. Phys. D 17, 125 (1985)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Maffione, N.P., Darriba, L.A., Cincotta, P.M., Giordano, C.M.: Chaos detection tools: application to a self-consistent triaxial model. Mon. Not. R. Astron. Soc. 429, 2700 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Mandelbrot, B.B.: Les objets fractals: forme, hasard et dimension. Flammarion, Paris (1975)zbMATHGoogle Scholar
  18. 18.
    Manos, T., Athanassoula, E.: Regular and chaotic orbits in barred galaxies – I. Applying the SALI/GALI method to explore their distribution in several models. Mon. Not. R. Astron. Soc. 415, 629 (2011)Google Scholar
  19. 19.
    Manos, T., Machado, R.E.G.: Chaos and dynamical trends in barred galaxies: bridging the gap between N-body simulations and time-dependent analytical models. Mon. Not. R. Astron. Soc. 438, 2201 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Ott E., Alexander, J.C., Kan, I., Sommerer, J.C., Yorke, J.A.: The transition to chaotic attractors with riddled basins. Phys. D 76, 384 (1994)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Prasad, A., Ramaswany, R.: Characteristic distributions of finite-time Lyapunov exponents. Phys. Rev. E 60, 2761 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Sauer, T.: Shadowing breakdown and large errors in dynamical simulations of physical systems. Phys. Rev. E. 65, 036220 (2002)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Sauer, T., Grebogi, C., Yorke, J.A.: How long do numerical chaotic solutions remain valid? Phys. Lett. A 79, 59 (1997)CrossRefGoogle Scholar
  24. 24.
    Sepulveda, M.A., Badii, R., Pollak, E.: Spectral analysis of conservative dynamical systems. Phys. Lett. 63, 1226 (1989)CrossRefGoogle Scholar
  25. 25.
    Tomsovic, S., Lakshminarayan A.: Fluctuations of finite-time stability exponents in the standard map and the detection of small islands. Phys. Rev. E 76, 036207 (2007)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Vallejo, J.C., Aguirre, J., Sanjuan, M.A.F.: Characterization of the local instability in the Henon-Heiles Hamiltonian. Phys. Lett. A 311, 26 (2003)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Vallejo, J.C., Viana, R., Sanjuan, M.A.F.: Local predictibility and non hyperbolicity through finite Lyapunov Exponents distributions in two-degrees-of-freedom Hamiltonian systems. Phys. Rev. E 78, 066204 (2008)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Vallejo, J.C., Sanjuan, M.A.F.: Predictability of orbits in coupled systems through finite-time Lyapunov exponents. New J. Phys. 15, 113064 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Vallejo, J.C., Sanjuan, M.A.F.: The forecast of predictability for computed orbits in galactic models. Mon. Not. R. Astron. Soc. 447, 3797 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Viana, R.L., Pinto, S.E., Barbosa, J.R., Grebogi, C.: Pseudo-deterministic chaotic systems. Int. J. Bifurcation Chaos Appl. Sci. Eng. 11, 1 (2003)Google Scholar
  31. 31.
    Viana, R.L., Barbosa, J.R., Grebogi, C., Batista, C.M.: Simulating a Chaotic Process. Braz. J. Phys. 35, 1 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Werndl, C.: What are the new implications of Chaos for unpredictability. Br. J. Philos. Sci. 60, 195–220 (2009)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Westfall, P.H.: Kurtosis as Peakedness. 1905–2014, R.I.P. Am. Stat. 68, 191 (2014)Google Scholar
  34. 34.
    Yanchuk, S., Kapitaniak, T.: Chaos-hyperchaos transition in coupled Rössler systems. Phys. Lett. A 290, 139 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Yanchuk, S., Kapitaniak, T.: Symmetry increasing bifurcation as a predictor of chaos-hyperchaos transition in coupled systems. Phys. Rev. E 64, 056235 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    Yoneyama, K.: Theory of continuous sets of points. Tohoku Math. J. 11, 43 (1917)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan C. Vallejo
    • 1
  • Miguel A. F. Sanjuan
    • 1
  1. 1.Departamento de FisicaUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations