Robotics Research pp 1019-1036 | Cite as

Interleaving Planning and Control for Deformable Object Manipulation

  • Dale McConachieEmail author
  • Mengyao Ruan
  • Dmitry Berenson
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 10)


We present a framework for deformable object manipulation that interleaves planning and control, enabling complex manipulation tasks without relying on high-fidelity modeling or simulation. The key question we address is when should we use planning and when should we use control to achieve the task? Planners are designed to find paths through complex configuration spaces, but for highly underactuated systems such as deformable objects achieving a specific configuration is very difficult even with high-fidelity models. Conversely, controllers can be designed to achieve specific configurations, but they can be trapped in undesirable local minima due to obstacles. Our approach consists of three components: (1) A global motion planner to generate gross motion of the deformable object; (2) A local controller for refinement of the configuration of the deformable object; and (3) A novel deadlock prediction algorithm to determine when to use planning versus control. By separating planning from control we are able to use different representations of the deformable object, reducing overall complexity and enabling efficient computation of motion. We demonstrate that our framework is able to successfully perform several manipulation tasks in simulation which cannot be performed using either our controller or planner alone.


Motion planning Deformable object manipulation 


  1. 1.
    Anshelevich, E., Owens, S., Lamiraux, F., Kavraki, L.: Deformable volumes in path planning applications. In: ICRA (2000)Google Scholar
  2. 2.
    Bai, Y., Yu, W., Liu, C.K.: Dexterous manipulation of cloth. Comput. Graph. Forum 35(2), 523–532 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berenson, D.: Manipulation of deformable objects without modeling and simulating deformation. In: IROS (2013)Google Scholar
  4. 4.
    Bhattacharya, S., Likhachev, M., Kumar, V.: Topological constraints in search-based robot path planning. Auton. Robot. 33(3), 273–290 (2012)CrossRefGoogle Scholar
  5. 5.
    Brass, P., Vigan, I., Xu, N.: Shortest path planning for a tethered robot. Comput. Geom. 48(9), 732–742 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Burchan Bayazit, O., Jyh-Ming, L., Amato, N.: Probabilistic roadmap motion planning for deformable objects. In: ICRA (2002)Google Scholar
  7. 7.
    Coumans, E.: Bullet physics library. Open source: (2010)
  8. 8.
    Essahbi, N., Bouzgarrou, B.C., Gogu, G.: Soft material modeling for robotic manipulation. In: Applied Mechanics and Materials (2012)Google Scholar
  9. 9.
    Frank, B., Stachniss, C., Abdo, N., Burgard, W.: Efficient motion planning for manipulation robots in environments with deformable objects. In: IROS (2011)Google Scholar
  10. 10.
    Gayle, R., Lin, M., Manocha, D.: Constraint-based motion planning of deformable robots. In: ICRA (2005)Google Scholar
  11. 11.
    Hirai, S., Wada, T.: Indirect simultaneous positioning of deformable objects with multi-pinching fingers based on an uncertain model. Robotica 18(1), 3–11 (2000)CrossRefGoogle Scholar
  12. 12.
    Huang, S.H., Pan, J., Mulcaire, G., Abbeel, P.: Leveraging appearance priors in non-rigid registration, with application to manipulation of deformable objects. In: IROS (2015)Google Scholar
  13. 13.
    Jaillet, L., Siméon, T.: Path deformation roadmaps: compact graphs with useful cycles for motion planning. Int. J. Robot. Res. 27(11–12), 1175–1188 (2008)CrossRefGoogle Scholar
  14. 14.
    Jiménez, P.: Survey on model-based manipulation planning of deformable objects. Robot. Comput.-Integr. Manuf. 28(2), 154–163 (2012)CrossRefGoogle Scholar
  15. 15.
    Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  16. 16.
    Khalil, F., Payeur, P.: Dexterous robotic manipulation of deformable objects with multi-sensory feedback – a review. In: In-Teh (ed.) Robot Manipulators, Trends and Development, chap. 28, pp. 587–621 (2010)Google Scholar
  17. 17.
    Lamiraux, F., Kavraki, L.E.: Planning paths for elastic objects under manipulation constraints. Int. J. Robot. Res. 20(3), 188–208 (2001)CrossRefGoogle Scholar
  18. 18.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  19. 19.
    McConachie, D., Berenson, D.: Bandit-Based Model Selection for Deformable Object Manipulation. WAFR (2016)Google Scholar
  20. 20.
    Moll, M., Kavraki, L.E.: Path planning for deformable linear objects. IEEE Trans. Robot. 22(4), 625–636 (2006)CrossRefGoogle Scholar
  21. 21.
    Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation, vol. 29. CRC Press, Boca Raton (1994)Google Scholar
  22. 22.
    Navarro-Alarcon, D., Liu, Y.h., Romero, J.G., Li, P.: On the visual deformation servoing of compliant objects: uncalibrated control methods and experiments. Int. J. Robot. Res. 33(11), 1462–1480 (2014)Google Scholar
  23. 23.
    Park, D., Kapusta, A., Hawke, J., Kemp, C.C.: Interleaving planning and control for efficient haptically-guided reaching in unknown environments. In: Humanoids (2014)Google Scholar
  24. 24.
    Quinlan, S.: Real-time modification of collision-free paths. Ph.D. thesis, Department of Computer Science, Stanford University (1994)Google Scholar
  25. 25.
    Rodriguez, S., Amato, N.: An obstacle-based rapidly-exploring random tree. In: ICRA (2006)Google Scholar
  26. 26.
    Roussel, O., Borum, A., Taïx, M., Bretl, T.: Manipulation planning with contacts for an extensible elastic rod by sampling on the submanifold of static equilibrium configurations. In: ICRA (2015)Google Scholar
  27. 27.
    Saha, M., Isto, P., Latombe, J.C.: Motion planning for robotic manipulation of deformable linear objects. In: Proceedings of the International Symposium On Experimental Robotics (ISER) (2006)Google Scholar
  28. 28.
    Schulman, J., Ho, J., Lee, C., Abbeel, P.: Learning from demonstrations through the use of non-rigid registration. In: Springer Tracts in Advanced Robotics, vol. 114, pp. 339–354. Springer International Publishing, Berlin (2016)Google Scholar
  29. 29.
    Smolen, J., Patriciu, A.: Deformation planning for robotic soft tissue manipulation. In: 2009 Second International Conferences on Advances in Computer-Human Interactions, pp. 199–204 (2009)Google Scholar
  30. 30.
    Soonkyum Kim, Likhachev, M.: Path planning for a tethered robot using Multi-Heuristic A* with topology-based heuristics. In: IROS (2015)Google Scholar
  31. 31.
    Wada, T., Hirai, S., Kawarnura, S., Karniji, N.: Robust manipulation of deformable objects by a simple PID feedback. In: ICRA (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dale McConachie
    • 1
    Email author
  • Mengyao Ruan
    • 1
  • Dmitry Berenson
    • 1
  1. 1.University of MichiganAnn ArborUSA

Personalised recommendations