Advertisement

Synchronicity Trumps Mischief in Rhythmic Human-Robot Social-Physical Interaction

  • Naomi T. FitterEmail author
  • Katherine J. Kuchenbecker
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 10)

Abstract

Hand-clapping games and other forms of rhythmic social-physical interaction might help foster human-robot teamwork, but the design of such interactions has scarcely been explored. We leveraged our prior work to enable the Rethink Robotics Baxter Research Robot to competently play one-handed tempo-matching hand-clapping games with a human user. To understand how such a robot’s capabilities and behaviors affect user perception, we created four versions of this interaction: the hand clapping could be initiated by either the robot or the human, and the non-initiating partner could be either cooperative, yielding synchronous motion, or mischievously uncooperative. Twenty adults tested two clapping tempos in each of these four interaction modes in a random order, rating every trial on standardized scales. The study results showed that having the robot initiate the interaction gave it a more dominant perceived personality. Despite previous results on the intrigue of misbehaving robots, we found that moving synchronously with the robot almost always made the interaction more enjoyable, less mentally taxing, less physically demanding, and lower effort for users than asynchronous interactions caused by robot or human mischief. Taken together, our results indicate that cooperative rhythmic social-physical interaction has the potential to strengthen human-robot partnerships.

Keywords

Social robotics Physical human-robot interaction Social motor coordination Synchronization Mischievous robots 

References

  1. 1.
    Ammi, M., Demulier, V., Caillou, S., Gaffary, Y., Tsalamlal, Y., Martin, J.C., Tapus, A.: Haptic human-robot affective interaction in a handshaking social protocol. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 263–270 (2015)Google Scholar
  2. 2.
    Argall, B.D., Billard, A.G.: A survey of tactile human-robot interactions. Robot. Auton. Syst. 58(10), 1159–1176 (2010)CrossRefGoogle Scholar
  3. 3.
    Avraham, G., Nisky, I., Fernandes, H.L., Acuna, D.E., Kording, K.P., Loeb, G.E., Karniel, A.: Toward perceiving robots as humans: three handshake models face the Turing-like handshake test. IEEE Trans, Haptics 5(3), 196–207 (2012)CrossRefGoogle Scholar
  4. 4.
    Baum, E.E., Jarjoura, D., Polen, A.E., Faur, D., Rutecki, G.: Effectiveness of a group exercise program in a long-term care facility: a randomized pilot trial. J. Am. Med. Dir. Assoc. 4(2), 74–80 (2003)CrossRefGoogle Scholar
  5. 5.
    Bernieri, F.J., Rosenthal, R.: Interpersonal coordination: behavior matching and interactional synchrony. In: Fundamentals of Nonerbal Behavior, Cambridge University Press, pp. 401–432 (1991)Google Scholar
  6. 6.
    Brodsky, W., Sulkin, I.: Handclapping songs: a spontaneous platform for child development among 5–10-year-old children. Early Child Dev. Care 181(8), 1111–1136 (2011)CrossRefGoogle Scholar
  7. 7.
    Dautenhahn, K., Werry, I.: Issues of robot-human interaction dynamics in the rehabilitation of children with autism. In: From Animals to Animats, vol. 6, pp. 519–528 (2000)Google Scholar
  8. 8.
    De Santis, A., Siciliano, B., De Luca, A., Bicchi, A.: An atlas of physical human-robot interaction. Mech. Mach. Theory 43(3), 253–270 (2008)CrossRefGoogle Scholar
  9. 9.
    Fasola, J., Matarić, M.J.: Using socially assistive human-robot interaction to motivate physical exercise for older adults. Proc. IEEE 100(8), 2512–2526 (2012)CrossRefGoogle Scholar
  10. 10.
    Fitter, N.T., Kuchenbecker, K.J.: Designing and assessing expressive open-source faces for the Baxter robot. In: Proceedings of the IEEE International Conference on Social Robotics (ICSR), pp. 340–350 (2016)Google Scholar
  11. 11.
    Fitter, N.T., Kuchenbecker, K.J.: Equipping the Baxter robot with human-inspired hand-clapping skills. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 105–112 (2016)Google Scholar
  12. 12.
    Fitter, N.T, Kuchenbecker, K.J.: Qualitative user reactions to a hand-clapping humanoid robot. In: Proceedings of the IEEE International Conference on Social Robotics (ICSR), pp. 317–327 (2016)Google Scholar
  13. 13.
    Fitter, N.T., Hawkes, D.T., Kuchenbecker, K.J.: Rhythmic timing in playful human-robot social motor coordination. In: Proceedings of the IEEE International Conference on Social Robotics (ICSR), pp. 296–305 (2016)Google Scholar
  14. 14.
    Glasauer, S., Huber, M., Basili, P., Knoll, A., Brandt, T.: Interacting in time and space: investigating human-human and human-robot joint action. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 252–257 (2010)Google Scholar
  15. 15.
    Groom, V., Nass, C.: Can robots be teammates?: Benchmarks in human-robot teams. Interaction Studies 8(3), 483–500 (2007)CrossRefGoogle Scholar
  16. 16.
    Hardy, M.W., LaGasse, A.B.: Rhythm, movement, and autism: using rhythmic rehabilitation research as a model for autism. Autism: The Movement Perspective (2015)Google Scholar
  17. 17.
    Heerink, M., Krose, B,. Evers, V., Wielinga, B.: The influence of social presence on enjoyment and intention to use of a robot and screen agent by elderly users. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 695–700 (2008)Google Scholar
  18. 18.
    Hoffman, G., Weinberg, G.: Synchronization in human-robot musicianship. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 718–724 (2010)Google Scholar
  19. 19.
    Iqbal, T., Rack, S., Riek, L.D.: Movement coordination in human-robot teams: a dynamical systems approach. IEEE Trans. Robot. 32(4), 909–919 (2016)CrossRefGoogle Scholar
  20. 20.
    Lawitzky, M., Mörtl, A., Hirche, S.: Load sharing in human-robot cooperative manipulation. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 185–191 (2010)Google Scholar
  21. 21.
    Lemaignan, S., Fink, J., Mondada, F., Dillenbourg, P.: You’re doing it wrong! Studying unexpected behaviors in child-robot interaction. In: Proceedings of the International Conference on Social Robotics (ICSR), Springer, pp. 390–400 (2015)Google Scholar
  22. 22.
    Maraz, A., Király, O., Urbán, R., Griffiths, M.D., Demetrovics, Z.: Why do you dance? Development of the dance motivation inventory (DMI). PloS One 10(3), (2015)Google Scholar
  23. 23.
    Michalowski, M.P., Sabanovic, S., Kozima, H.: A dancing robot for rhythmic social interaction. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 89–96 (2007)Google Scholar
  24. 24.
    Mörtl, A., Lorenz, T., Hirche, S.: Rhythm patterns interaction-synchronization behavior for human-robot joint action. PloS One 9(4), e95195 (2014)CrossRefGoogle Scholar
  25. 25.
    Murata, K., Nakadai, K., Takeda, R., Okuno, H.G., Torii, T., Hasegawa, Y., Tsujino, H.: A beat-tracking robot for human-robot interaction and its evaluation. In: Proceedings of the IEEE/RAS International Conference on Humanoid Robots, pp. 79–84 (2008)Google Scholar
  26. 26.
    NASA: Task Load Index (TLX). http://humansystems.arc.nasa.gov/groups/tlx/ (1988)
  27. 27.
    Nass, C., Moon, Y., Fogg, B.J., Reeves, B., Dryer, C.: Can computer personalities be human personalities? In: Conference Companion on Human Factors in Computing Systems, ACM, pp. 228–229 (1995)Google Scholar
  28. 28.
    Schmidt, R.C., Richardson, M.J.: Dynamics of interpersonal coordination. In: Coordination: Neural, Behavioral and Social Dynamics, pp. 281–308. Springer, Berlin (2008)Google Scholar
  29. 29.
    Shah, J., Wiken, J., Williams, B., Breazeal, C.: Improved human-robot team performance using Chaski, a human-inspired plan execution system. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 29–36 (2011)Google Scholar
  30. 30.
    Short, E., Hart, J., Vu, M., Scassellati, B.: No fair!! An interaction with a cheating robot. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 219–226 (2010)Google Scholar
  31. 31.
    Srinivasan, S.M., Kaur, M., Park, I.K., Gifford, T.D., Marsh, K.L., Bhat, A.N.: The effects of rhythm and robotic interventions on the imitation/praxis, interpersonal synchrony, and motor performance of children with autism spectrum disorder (ASD): A pilot randomized controlled trial. In: Autism Research and Treatment, Hindawi Publishing Corporation (2015)Google Scholar
  32. 32.
    Tarr, B., Launay, J., Dunbar, R.I.M.: Music and social bonding: “self-other” merging and neurohormonal mechanisms. Front. Psychol. 5(1096) (2014)Google Scholar
  33. 33.
    Tellex, S., Knepper, R., Li, A., Rus, D., Roy, N.: Asking for help using inverse semantics. Robot. Sci. Syst. 2(3), (2014)Google Scholar
  34. 34.
    Vázquez, M., May, A., Steinfeld, A., Chen, W.H.: A deceptive robot referee in a multiplayer gaming environment. In: Proceedings of the IEEE International Conference on Collaboration Technologies and Systems (CTS), pp. 204–211 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Haptics Group, GRASP Lab, MEAM DepartmentUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Haptic Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgartGermany
  3. 3.Haptics Group, GRASP Lab, MEAM and CIS DepartmentsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations