Advertisement

Towards Interaction, Disturbance and Fault Aware Flying Robot Swarms

  • Teodor TomićEmail author
  • Sami Haddadin
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 10)

Abstract

Visual navigation, mapping, obstacle avoidance and autonomous operation are becoming increasingly commercially available in flying robots. Recent research in control of flying robots has therefore shifted beyond sensor based trajectory tracking towards physical interaction and manipulation control. However, current research mainly focuses on specialized interaction cases under indoor or hovering conditions. Furthermore, the problem of physical interaction control for entire robot swarms operating under different control objectives is essentially unexplored terrain, as is the systematic treatment of disturbances and faults for both single and swarm systems, respectively. In this position paper, we argue that robust operation of interacting flying robots requires systematic handling of interactions and external inputs such as faults from individual robot to swarm level. For this, we introduce a scalable awareness methodology for interaction, disturbance and fault handling resulting in the awareness pipeline scheme. Another algorithmic key element for unification is the extension of well established methods from operational space and multipriority robot control to this system class, potentially leading to novel controls and skills of flying robot swarms.

References

  1. 1.
    Acosta, J.A., de Cos, C.R., Ollero, A.: A robust decentralised strategy for multi-task control of unmanned aerial systems. Application on underactuated aerial manipulator. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1075–1084 (2016)Google Scholar
  2. 2.
    Alexis, K., Darivianakis, G., Burri, M., Siegwart, R.: Aerial robotic contact-based inspection: planning and control. Auton. Robot. 40(4), 631–655 (2016)CrossRefGoogle Scholar
  3. 3.
    Antonelli, G., Arrichiello, F., Chiaverini, S.: The null-space-based behavioral control for autonomous robotic systems. Intell. Serv. Robot. 1(1), 27–39 (2008)CrossRefGoogle Scholar
  4. 4.
    Augugliaro, F., D’Andrea, R.: Admittance control for physical human-quadrocopter interaction. In: Control Conference (ECC). 2013 European, pp. 1805–1810. Zürich, Switzerland (2013)Google Scholar
  5. 5.
    Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M.W., Willmann, J.S., Gramazio, F., Kohler, M., D’Andrea, R.: The flight assembled architecture installation: cooperative construction with flying machines. IEEE Control Syst. 34(4), 46–64 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Baizid, K., Giglio, G., Pierri, F., Trujillo, M.A., Antonelli, G., Caccavale, F., Viguria, A., Chiaverini, S., Ollero, A.: Behavioral control of unmanned aerial vehicle manipulator systems. Auton. Robot. 41(5), 1203–1220 (2017)CrossRefGoogle Scholar
  7. 7.
    Bangura, M., Lim, H., Kim, H.J., Mahony, R.: Aerodynamic Power Control for Multirotor Aerial Vehicles. In: ICRA 2014, pp. 529–536. Hong Kong, China (2014)Google Scholar
  8. 8.
    Bangura, M., Mahony, R.: Thrust control for multirotor aerial vehicles. IEEE Trans. Robot. 33, accepted (2017)Google Scholar
  9. 9.
    Bellens, S., De Schutter, J., Bruyninckx, H.: A hybrid pose/wrench control framework for quadrotor helicopters. ICRA 2012, 2269–2274 (2012)Google Scholar
  10. 10.
    Bernard, M., Kondak, K.: Generic slung load transportation system using small size helicopters. In: IEEE International Conference on Robotics and Automation, ICRA’09, pp. 3258–3264. IEEE (2009)Google Scholar
  11. 11.
    Brescianini, D., D’Andrea, R.: Design, modeling and control of an omni-directional aerial vehicle. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3261–3266. IEEE (2016)Google Scholar
  12. 12.
    Briod, A., Kornatowski, P., Klaptocz, A., Garnier, A., Pagnamenta, M., Zufferey, J.C., Floreano, D.: Contact-based navigation for an autonomous flying robot. IROS 2013, 3987–3992 (2013)Google Scholar
  13. 13.
    Bruschi, P., Piotto, M., Dell’Agnello, F., Ware, J., Roy, N.: Wind speed and direction detection by means of solid-state anemometers embedded on small quadcopters. Procedia Eng. 168, 802–805 (2016)CrossRefGoogle Scholar
  14. 14.
    Davis, E., Pounds, P.E.I.: Direct sensing of thrust and velocity for a quadrotor rotor array. IEEE Robot. Autom. Lett. 2(3), 1360–1366 (2017)CrossRefGoogle Scholar
  15. 15.
    De Luca, A., Albu-Schaffer, A., Haddadin, S., Hirzinger, G.: Collision detection and safe reaction with the dlr-iii lightweight manipulator arm. IROS 2006, 1623–1630 (2006)Google Scholar
  16. 16.
    Ding, S.: Model-based fault diagnosis techniques: design schemes, algorithms, and tools. Springer Science & Business Media, Berlin (2008)Google Scholar
  17. 17.
    Franchi, A., Secchi, C., Ryll, M., Bülthoff, H., Giordano, P.R.: Shared control: Balancing autonomy and human assistance with a group of quadrotor uavs. IEEE Robot. Autom. Mag. 19(3) (2012)Google Scholar
  18. 18.
    Fumagalli, M., Naldi, R., Macchelli, A., Forte, F., Keemink, A.Q.L., Stramigioli, S., Carloni, R., Marconi, L.: Developing an aerial manipulator prototype: physical interaction with the environment. IEEE Robot. Autom. Mag. 21(3), 41–50 (2014)CrossRefGoogle Scholar
  19. 19.
    Gioioso, G., Franchi, A., Salvietti, G., Scheggi, S., Prattichizzo, D.: The flying hand: a formation of uavs for cooperative aerial tele-manipulation. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4335–4341 (2014)Google Scholar
  20. 20.
    Gustafsson, F., Gustafsson, F.: Adaptive filtering and change detection, vol. 1. Wiley, New York (2000)zbMATHGoogle Scholar
  21. 21.
    Haddadin, S., Luca, A.D., Albu-Schäffer, A.: Robot collisions: a survey on detection, isolation, and identification. IEEE Trans. Robot. PP(99), 1–21 (2017)Google Scholar
  22. 22.
    Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)CrossRefGoogle Scholar
  23. 23.
    Li, S., Yang, J., Chen, W.H., Chen, X.: Disturbance Observer-Based Control: Methods and Applications, 1st edn. CRC Press Inc, Boca Raton (2014)Google Scholar
  24. 24.
    Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V.: Design, modeling, estimation and control for aerial grasping and manipulation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 2668–2673 (2011)Google Scholar
  25. 25.
    Mellinger, D., Shomin, M., Michael, N., Kumar, V.: Cooperative grasping and transport using multiple quadrotors. In: Distributed autonomous robotic systems, pp. 545–558. Springer (2013)Google Scholar
  26. 26.
    Mersha, A.Y., Stramigioli, S., Carloni, R.: Variable impedance control for aerial interaction. In: IROS2014, pp. 3435–3440. IEEE (2014)Google Scholar
  27. 27.
    Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton. Robot. 30(1), 73–86 (2011)CrossRefGoogle Scholar
  28. 28.
    Mueller, M.W., D’Andrea, R.: Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 45–52. IEEE (2014)Google Scholar
  29. 29.
    Muscio, G., Pierri, F., Trujillo, M.A., Cataldi, E., Giglio, G., Antonelli, G., Caccavale, F., Viguria, A., Chiaverini, S., Ollero, A.: Experiments on coordinated motion of aerial robotic manipulators. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1224–1229 (2016)Google Scholar
  30. 30.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control. 51(3), 401–420 (2006)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  32. 32.
    Oung, R., D’Andrea, R.: The distributed flight array: design, implementation, and analysis of a modular vertical take-off and landing vehicle. Int. J. Robot. Res. 33(3), 375–400 (2014)CrossRefGoogle Scholar
  33. 33.
    Papachristos, C., Alexis, K., Tzes, A.: Efficient force exertion for aerial robotic manipulation: exploiting the thrust-vectoring authority of a tri-tiltrotor uav. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4500–4505 (2014)Google Scholar
  34. 34.
    Rajappa, S., Ryll, M., Bülthoff, H.H., Franchi, A.: Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4006–4013 (2015)Google Scholar
  35. 35.
    Rajappa, S., Bülthoff, H., Stegagno, P.: Design and implementation of a novel architecture for physical human-uav interaction. Int. J. Robot. Res. 0278364917708038 (2017)Google Scholar
  36. 36.
    Ruggiero, F., Cacace, J., Sadeghian, H., Lippiello, V.: Impedance Control of VToL UAVs with a Momentum-based External Generalized Forces Estimator. In: ICRA 2014, pp. 2093–2099. Hong Kong, China (2014)Google Scholar
  37. 37.
    Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G, C., F, Franchi, A.: 6d physical interaction with a fully actuated aerial robot. In: 2017 IEEE International Conference on Robotics and Automation (ICRA) (2017)Google Scholar
  38. 38.
    Ryll, M., Bicego, D., Franchi, A.: Modeling and Control of FAST-Hex: a Fully-Actuated by Synchronized-Tilting Hexarotor. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2016. Daejeon, South Korea (2016)Google Scholar
  39. 39.
    Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin (2016)Google Scholar
  40. 40.
    Simani, S., Fantuzzi, C., Patton, R.J.: Model-based fault diagnosis in dynamic systems using identification techniques. Springer Science & Business Media, Berlin (2013)Google Scholar
  41. 41.
    Sreenath, K., Lee, T., Kumar, V.: Geometric control and differential flatness of a quadrotor uav with a cable-suspended load. In: 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 2269–2274. IEEE (2013)Google Scholar
  42. 42.
    Tomić, T.: Evaluation of acceleration-based disturbance observation for multicopter control. In: 2014 European Control Conference (ECC), pp. 2937–2944. Strasbourg, France (2014)Google Scholar
  43. 43.
    Tomić, T., Haddadin, S.: A unified framework for external wrench estimation, interaction control and collision reflexes for flying robots. In: IROS 2014, pp. 5290–5296. IEEE, Chicago, IL, USA (2014)Google Scholar
  44. 44.
    Tomić, T., Haddadin, S.: Simultaneous estimation of aerodynamic and contact forces in flying robots: applications to metric wind estimation and collision detection. In: ICRA 2015, pp. 5290–5296. Seattle, WA, USA (2015)Google Scholar
  45. 45.
    Tomić, T., Ott, C., Haddadin, S.: External wrench estimation, collision detection, and reflex reaction for flying robots. IEEE Trans. Robot. PP(99), 1–17 (2017)Google Scholar
  46. 46.
    Tomić, T., Schmid, K., Lutz, P., Mathers, A., Haddadin, S.: The flying anemometer: unified estimation of wind velocity from aerodynamic power and wrenches. In: IROS 2016, pp. 1637–1644. IEEE, Daejeon, Korea (2016)Google Scholar
  47. 47.
    Ware, J., Roy, N.: An analysis of wind field estimation and exploitation for quadrotor flight in the urban canopy layer. In: ICRA 2016, pp. 1507–1514. IEEE (2016)Google Scholar
  48. 48.
    Waslander, S.L., Wang, C.: Wind disturbance estimation and rejection for quadrotor position control. In: AIAA Infotech@Aerospace Conference. Seattle, WA, USA (2009)Google Scholar
  49. 49.
    Yao, J.W., Desaraju, V.R., Michael, N.: Experience-based models of surface proximal aerial robot flight performance in wind. In: International Symposium on Experimental Robotics, pp. 563–573. Springer (2016)Google Scholar
  50. 50.
    Yeo, D.W., Sydney, N., Paley, D.A.: Onboard Flow Sensing for Rotary-Wing UAV Pitch Control in Wind. In: Proceedings of the AIAA GNC Conference, p. 1386 (2016)Google Scholar
  51. 51.
    Zhao, M., Kawasaki, K., Chen, X., Kakiuchi, Y., Okada, K., Inaba, M.: Transformable Multirotor with Two-Dimensional Multilinks: Modeling, Control, and Whole-Body Aerial Manipulation, pp. 515–524. Springer International Publishing, Cham (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.SkydioRedwood CityUSA
  2. 2.Chair of Robotics and Systems Intelligence, Munich School of Robotics and Machine IntelligenceTechnical University of Munich (TUM)MunichGermany

Personalised recommendations