Advertisement

Infection and Endometrial Gene Expression: HHV-6 and Infertility

  • Roberta RizzoEmail author
Chapter

Abstract

Pathogens represent a tremendous burden on the reproductive fitness of humans, tailoring variations in endometrial immune cells. As such, the immune phenotypes of endometrial immune cells can have a profound effect on how an infectious pathogen might reduce the reproductive fitness of individuals in a population. HHV-6 is a betaherpesvirus that exists as two closely related variants, HHV-6A and HHV-6B. Recently, HHV-6 infection of the female genital tract has been implicated in pregnancy-related diseases. In particular, the presence of HHV-6 infection of the endometrial epithelial cells seems to be associated with female idiopathic infertility, causing a specific modification of gene expression in both endometrium and endometrial natural killer cells.

Keywords

Herpesvirus HHV-6 Female infertility Natural killer cells Gene expression Endometrium 

References

  1. 1.
    Baker JM, Chase DM, Herbst-Kralovetz MM. Uterine microbiota: residents, tourists, or invaders? Front Immunol. 2018;9:208.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Cicinelli E, Ballini A, Marinaccio M, Poliseno A, Coscia MF, Monno R, De Vito D. Microbiological findings in endometrial specimen: our experience. Arch Gynecol Obstet. 2012;285:1325–9.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Egbase PE, al-Sharhan M, al-Othman S, al-Mutawa M, Udo EE, Grudzinskas JG. Incidence of microbial growth from the tip of the embryo transfer catheter after embryo transfer in relation to clinical pregnancy rate following in-vitro fertilization and embryo transfer. Hum Reprod. 1996;11:1687–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Moore DE, Soules MR, Klein NA, Fujimoto VY, Agnew KJ, Eschenbach DA. Bacteria in the transfer catheter tip influence the live-birth rate after in vitro fertilization. Fertil Steril. 2000;74:1118–24.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chuong EB. Retroviruses facilitate the rapid evolution of the mammalian placenta. BioEssays. 2013;35:853–61.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Chuong EB, Rumi MA, Soares MJ, Baker JC. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet. 2013;45:325–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gibson CS, MacLennan AH, Goldwater PN, Haan EA, Priest K, Dekker GA, South Australian Cerebral Palsy Research. Neurotropic viruses and cerebral palsy: population based case-control study. BMJ. 2006;332:76–80.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Sun Y, Pei W, Wu Y, Jing Z, Zhang J, Wang G. Herpes simplex virus type 2 infection is a risk factor for hypertension. Hypertens Res. 2004;27:541–4.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    McLean LK, Chehab FF, Goldberg JD. Detection of viral deoxyribonucleic acid in the amniotic fluid of low-risk pregnancies by polymerase chain reaction. Am J Obstet Gynecol. 1995;173:1282–6.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wenstrom KD, Andrews WW, Bowles NE, Towbin JA, Hauth JC, Goldenberg RL. Intrauterine viral infection at the time of second trimester genetic amniocentesis. Obstet Gynecol. 1998;92:420–4.PubMedGoogle Scholar
  11. 11.
    Fisher S, Genbacev O, Maidji E, Pereira L. Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: implications for transmission and pathogenesis. J Virol. 2000;74:6808–20.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Adams Waldorf KM, McAdams RM. Influence of infection during pregnancy on fetal development. Reproduction. 2013;146:R151–62.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    De Bolle L, Naesens L, De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev. 2005;18:217–45.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Braun DK, Dominguez G, Pellett PE. Human herpesvirus 6. Clin Microbiol Rev. 1997;10:521–67.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Santoro F, Kennedy PE, Locatelli G, Malnati MS, Berger EA, Lusso P. CD46 is a cellular receptor for human herpesvirus 6. Cell. 1999;99:817–27.PubMedCrossRefGoogle Scholar
  16. 16.
    Tang H, Serada S, Kawabata A, Ota M, Hayashi E, Naka T, Yamanishi K, Mori Y. CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proc Natl Acad Sci U S A. 2013;110:9096–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Rizzo R, Soffritti I, D’Accolti M, Bortolotti D, Di Luca D, Caselli E. HHV-6A/6B infection of NK cells modulates the expression of miRNAs and transcription factors potentially associated to impaired NK activity. Front Microbiol. 2017;8:2143.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Caruso A, Caselli E, Fiorentini S, Rotola A, Prandini A, Garrafa E, Saba E, Alessandri G, Cassai E, Di Luca D. U94 of human herpesvirus 6 inhibits in vitro angiogenesis and lymphangiogenesis. Proc Natl Acad Sci U S A. 2009;106:20446–51.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Caruso A, Favilli F, Rotola A, Comar M, Horejsh D, Alessandri G, Grassi M, Di Luca D, Fiorentini S. Human herpesvirus-6 modulates RANTES production in primary human endothelial cell cultures. J Med Virol. 2003;70:451–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Caselli E, Campioni D, Cavazzini F, Gentili V, Bortolotti D, Cuneo A, Di Luca D, Rizzo R. Acute human herpesvirus-6A infection of human mesothelial cells modulates HLA molecules. Arch Virol. 2015;160:2141–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Gu B, Zhang GF, Li LY, Zhou F, Feng DJ, Ding CL, Chi J, Zhang C, Guo DD, Wang JF, Zhou H, Yao K, Hu WX. Human herpesvirus 6A induces apoptosis of primary human fetal astrocytes via both caspase-dependent and -independent pathways. Virol J. 2011;8:530.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Li C, Goodrich JM, Yang X. Interferon-gamma (IFN-gamma) regulates production of IL-10 and IL-12 in human herpesvirus-6 (HHV-6)-infected monocyte/macrophage lineage. Clin Exp Immunol. 1997;109:421–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Robert C, Aubin JT, Visse B, Fillet AM, Huraux JM, Agut H. Difference in permissiveness of human fibroblast cells to variants A and B of human herpesvirus-6. Res Virol. 1996;147:219–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Harberts E, Yao K, Wohler JE, Maric D, Ohayon J, Henkin R, Jacobson S. Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc Natl Acad Sci U S A. 2011;108:13734–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Donati D, Akhyani N, Fogdell-Hahn A, Cermelli C, Cassiani-Ingoni R, Vortmeyer A, Heiss JD, Cogen P, Gaillard WD, Sato S, Theodore WH, Jacobson S. Detection of human herpesvirus-6 in mesial temporal lobe epilepsy surgical brain resections. Neurology. 2003;61:1405–11.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Roush KS, Domiati-Saad RK, Margraf LR, Krisher K, Scheuermann RH, Rogers BB, Dawson DB. Prevalence and cellular reservoir of latent human herpesvirus 6 in tonsillar lymphoid tissue. Am J Clin Pathol. 2001;116:648–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Fox JD, Briggs M, Ward PA, Tedder RS. Human herpesvirus 6 in salivary glands. Lancet. 1990;336:590–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Kondo K, Kondo T, Okuno T, Takahashi M, Yamanishi K. Latent human herpesvirus 6 infection of human monocytes/macrophages. J Gen Virol. 1991;72(Pt 6):1401–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Luppi M, Barozzi P, Maiorana A, Marasca R, Torelli G. Human herpesvirus 6 infection in normal human brain tissue. J Infect Dis. 1994;169:943–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Luppi M, Barozzi P, Morris C, Maiorana A, Garber R, Bonacorsi G, Donelli A, Marasca R, Tabilio A, Torelli G. Human herpesvirus 6 latently infects early bone marrow progenitors in vivo. J Virol. 1999;73:754–9.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Suga S, Yazaki T, Kajita Y, Ozaki T, Asano Y. Detection of human herpesvirus 6 DNAs in samples from several body sites of patients with exanthem subitum and their mothers by polymerase chain reaction assay. J Med Virol. 1995;46:52–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Mukai T, Yamamoto T, Kondo T, Kondo K, Okuno T, Kosuge H, Yamanishi K. Molecular epidemiological studies of human herpesvirus 6 in families. J Med Virol. 1994;42:224–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Arbuckle JH, Medveczky PG. The molecular biology of human herpesvirus-6 latency and telomere integration. Microbes Infect. 2011;13:731–41.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Leach CT, Newton ER, McParlin S, Jenson HB. Human herpesvirus 6 infection of the female genital tract. J Infect Dis. 1994;169:1281–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Baillargeon J, Piper J, Leach CT. Epidemiology of human herpesvirus 6 (HHV-6) infection in pregnant and nonpregnant women. J Clin Virol. 2000;16:149–57.PubMedCrossRefGoogle Scholar
  36. 36.
    Maeda T, Okuno T, Hayashi K, Nagata M, Ueda M, Terashima K, Kawashima T, Miyamoto H, Mori T, Yamada Y. Outcomes of infants whose mothers are positive for human herpesvirus-6 DNA within the genital tract in early gestation. Acta Paediatr Jpn. 2000;39:653–7.CrossRefGoogle Scholar
  37. 37.
    Adams O, Krempe C, Kogler G, Wernet P, Scheid A. Congenital infections with human herpesvirus 6. J Infect Dis. 1998;178:544–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Boutolleau D, Cointe D, Gautheret-Dejean A, Mace M, Agut H, Grangeot-Keros L, Ingrand D. No evidence for a major risk of roseolovirus vertical transmission during pregnancy. Clin Infect Dis. 2003;36:1634–5.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Dahl H, Fjaertoft G, Norsted T, Wang FZ, Mousavi-Jazi M, Linde A. Reactivation of human herpesvirus 6 during pregnancy. J Infect Dis. 1999;180:2035–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Lanari M, Papa I, Venturi V, Lazzarotto T, Faldella G, Gabrielli L, Guerra B, Landini MP, Salvioli GP. Congenital infection with human herpesvirus 6 variant B associated with neonatal seizures and poor neurological outcome. J Med Virol. 2003;70:628–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Okuno T, Oishi H, Hayashi K, Nonogaki M, Tanaka K, Yamanishi K. Human herpesviruses 6 and 7 in cervixes of pregnant women. J Clin Microbiol. 1995;33:1968–70.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Caserta MT, Hall CB, Schnabel K, Lofthus G, McDermott MP. Human herpesvirus (HHV)-6 and HHV-7 infections in pregnant women. J Infect Dis. 2007;196:1296–303.PubMedGoogle Scholar
  43. 43.
    D’Agaro P, Burgnich P, Comar M, Dal Molin G, Bernardon M, Busetti M, Alberico S, Poli A, Campello C, Group SI. HHV-6 is frequently detected in dried cord blood spots from babies born to HIV-positive mothers. Curr HIV Res. 2008;6:441–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Hall CB, Caserta MT, Schnabel KC, Boettrich C, McDermott MP, Lofthus GK, Carnahan JA, Dewhurst S. Congenital infections with human herpesvirus 6 (HHV6) and human herpesvirus 7 (HHV7). J Pediatr. 2004;145:472–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Hall CB, Caserta MT, Schnabel K, Shelley LM, Marino AS, Carnahan JA, Yoo C, Lofthus GK, McDermott MP. Chromosomal integration of human herpesvirus 6 is the major mode of congenital human herpesvirus 6 infection. Pediatrics. 2008;122:513–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Al-Buhtori M, Moore L, Benbow EW, Cooper RJ. Viral detection in hydrops fetalis, spontaneous abortion, and unexplained fetal death in utero. J Med Virol. 2011;83:679–84.PubMedCrossRefGoogle Scholar
  47. 47.
    Ashshi AM, Cooper RJ, Klapper PE, Al-Jiffri O, Moore L. Detection of human herpes virus 6 DNA in fetal hydrops. Lancet. 2000;355:1519–20.PubMedCrossRefGoogle Scholar
  48. 48.
    Revest M, Minjolle S, Veyer D, Lagathu G, Michelet C, Colimon R. Detection of HHV-6 in over a thousand samples: new types of infection revealed by an analysis of positive results. J Clin Virol. 2011;51:20–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Drago F, Broccolo F, Javor S, Drago F, Rebora A, Parodi A. Evidence of human herpesvirus-6 and -7 reactivation in miscarrying women with pityriasis rosea. J Am Acad Dermatol. 2014;71:198–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Yasukawa M, Sada E, MacHino H, Fujita S. Reactivation of human herpesvirus 6 in pityriasis rosea. Br J Dermatol. 1999;140:169–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Tanaka-Taya K, Kondo T, Nakagawa N, Inagi R, Miyoshi H, Sunagawa T, Okada S, Yamanishi K. Reactivation of human herpesvirus 6 by infection of human herpesvirus 7. J Med Virol. 2000;60:284–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Drago F, Malaguti F, Ranieri E, Losi E, Rebora A. Human herpes virus-like particles in pityriasis rosea lesions: an electron microscopy study. J Cutan Pathol. 2002;29:359–61.PubMedCrossRefGoogle Scholar
  53. 53.
    Watanabe T, Kawamura T, Jacob SE, Aquilino EA, Orenstein JM, Black JB, Blauvelt A. Pityriasis rosea is associated with systemic active infection with both human herpesvirus-7 and human herpesvirus-6. J Invest Dermatol. 2002;119:793–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Bultmann BD, Klingel K, Nabauer M, Wallwiener D, Kandolf R. High prevalence of viral genomes and inflammation in peripartum cardiomyopathy. Am J Obstet Gynecol. 2005;193:363–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Gibson CS, Goldwater PN, MacLennan AH, Haan EA, Priest K, Dekker GA, South Australian Cerebral Palsy Research G. Fetal exposure to herpesviruses may be associated with pregnancy-induced hypertensive disorders and preterm birth in a Caucasian population. BJOG. 2008;115:492–500.PubMedCrossRefGoogle Scholar
  56. 56.
    Gervasi MT, Romero R, Bracalente G, Chaiworapongsa T, Erez O, Dong Z, Hassan SS, Yeo L, Yoon BH, Mor G, Barzon L, Franchin E, Militello V, Palu G. Viral invasion of the amniotic cavity (VIAC) in the midtrimester of pregnancy. J Matern Fetal Neonatal Med. 2012;25:2002–13.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wiersbitzky S, Ratzmann GW, Bruns R, Wiersbitzky H. Reactivation in children of juvenile chronic arthritis and chronic iridocyclitis associated with human herpesvirus-6 infection. Padiatr Grenzgeb. 1993;31:203–5.PubMedGoogle Scholar
  58. 58.
    Yoshikawa T, Ohashi M, Miyake F, Fujita A, Usui C, Sugata K, Suga S, Hashimoto S, Asano Y. Exanthem subitum-associated encephalitis: nationwide survey in Japan. Pediatr Neurol. 2009;41:353–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Rentz AC, Stevenson J, Hymas W, Hillyard D, Stoddard GJ, Taggart EW, Byington CL. Human herpesvirus 6 in the newborn intensive care unit. Eur J Clin Microbiol Infect Dis. 2009;26:297–9.CrossRefGoogle Scholar
  60. 60.
    Marci R, Gentili V, Bortolotti D, Lo Monte G, Caselli E, Bolzani S, Rotola A, Di Luca D, Rizzo R. Presence of HHV-6A in endometrial epithelial cells from women with primary unexplained infertility. PLoS One. 2016;11:e0158304.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Caselli E, Bortolotti D, Marci R, Rotola A, Gentili V, Soffritti I, D’Accolti M, Lo Monte G, Sicolo M, Barao I, Di Luca D, Rizzo R. HHV-6A infection of endometrial epithelial cells induces increased endometrial NK cell-mediated cytotoxicity. Front Microbiol. 2017;8:2525.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Coulam CB, Bilal M, Salazar Garcia MD, Katukurundage D, Elazzamy H, Fernandez EF, Kwak-Kim J, Beaman K, Dambaeva SV. Prevalence of HHV-6 in endometrium from women with recurrent implantation failure. Am J Reprod Immunol. 2018;80:e12862.PubMedCrossRefGoogle Scholar
  63. 63.
    Schmiedel D, Tai J, Levi-Schaffer F, Dovrat S, Mandelboim O. Human herpesvirus 6B downregulates expression of activating ligands during lytic infection to escape elimination by natural killer cells. J Virol. 2016;90:9608–17.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Rizzo R, Lo Monte G, Bortolotti D, Graziano A, Gentili V, Di Luca D, Marci R. Impact of soluble HLA-G levels and endometrial NK cells in uterine flushing samples from primary and secondary unexplained infertile women. Int J Mol Sci. 2015;16:5510–6.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Caselli E, Zatelli MC, Rizzo R, Benedetti S, Martorelli D, Trasforini G, Cassai E, degli Uberti EC, Di Luca D, Dolcetti R. Virologic and immunologic evidence supporting an association between HHV-6 and Hashimoto’s thyroiditis. PLoS Pathog. 2012;8:e1002951.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Yougbare I, Tai WS, Zdravic D, Oswald BE, Lang S, Zhu G, Leong-Poi H, Qu D, Yu L, Dunk C, Zhang J, Sled JG, Lye SJ, Brkic J, Peng C, Hoglund P, Croy BA, Adamson SL, Wen XY, Stewart DJ, Freedman J, Ni H. Activated NK cells cause placental dysfunction and miscarriages in fetal alloimmune thrombocytopenia. Nat Commun. 2017;8:224.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Herath S, Fischer DP, Werling D, Williams EJ, Lilly ST, Dobson H, Bryant CE, Sheldon IM. Expression and function of toll-like receptor 4 in the endometrial cells of the uterus. Endocrinology. 2006;147:562–70.PubMedCrossRefGoogle Scholar
  68. 68.
    Moffett A, Colucci F. Uterine NK cells: active regulators at the maternal-fetal interface. J Clin Invest. 2014;124:1872–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gaynor LM, Colucci F. Uterine natural killer cells: functional distinctions and influence on pregnancy in humans and mice. Front Immunol. 2017;8:467.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, Masch R, Lockwood CJ, Schachter AD, Park PJ, Strominger JL. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med. 2003;198:1201–12.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Chen SJ, Liu YL, Sytwu HK. Immunologic regulation in pregnancy: from mechanism to therapeutic strategy for immunomodulation. Clin Dev Immunol. 2012;2012:258391.PubMedGoogle Scholar
  72. 72.
    Torry DS, Leavenworth J, Chang M, Maheshwari V, Groesch K, Ball ER, Torry RJ. Angiogenesis in implantation. J Assist Reprod Genet. 2007;24:303–15.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Faas MM, de Vos P. Uterine NK cells and macrophages in pregnancy. Placenta. 2017;56:44–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Park DS, Lee H, Frank PG, Razani B, Nguyen AV, Parlow AF, Russell RG, Hulit J, Pestell RG, Lisanti MP. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol Biol Cell. 2002;13:3416–30.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Pattini L, Nielsen R. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 2011;7:e1002355.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Grindstaff JL, Hasselquist D, Nilsson JK, Sandell M, Smith HG, Stjernman M. Transgenerational priming of immunity: maternal exposure to a bacterial antigen enhances offspring humoral immunity. Proc Biol Sci. 2006;273:2551–7.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Vinketova K, Mourdjeva M, Oreshkova T. Human decidual stromal cells as a component of the implantation niche and a modulator of maternal immunity. J Pregnancy. 2016;2016:8689436.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Liu S, Diao L, Huang C, Li Y, Zeng Y, Kwak-Kim JYH. The role of decidual immune cells on human pregnancy. J Reprod Immunol. 2017;124:44–53.PubMedCrossRefGoogle Scholar
  79. 79.
    Wilczynski JR. Immunological analogy between allograft rejection, recurrent abortion and pre-eclampsia - the same basic mechanism? Hum Immunol. 2006;67:492–511.PubMedCrossRefGoogle Scholar
  80. 80.
    Oliver-Minarro D, Gil J, Aguaron A, Rodriguez-Mahou M, Fernandez-Cruz E, Sanchez-Ramon S. NK cell expansion in obstetrical antiphospholipid syndrome: guilty by association? Eur J Obstet Gynecol Reprod Biol. 2009;145:227.PubMedCrossRefGoogle Scholar
  81. 81.
    Benagiano M, Gerosa M, Romagnoli J, Mahler M, Borghi MO, Grassi A, Della Bella C, Emmi G, Amedei A, Silvestri E, Emmi L, Prisco D, Meroni PL, D’Elios MM. beta2 glycoprotein I recognition drives Th1 inflammation in atherosclerotic plaques of patients with primary antiphospholipid syndrome. J Immunol. 2017;198:2640–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Ferrara, Department of Chemical and Pharmaceutical SciencesFerraraItaly

Personalised recommendations