Advertisement

Endometrium Gene Expression and Epigenetic Regulation in Reproductive Failure

  • Jin Huang
  • Ruizhe Zhang
  • Chi Chiu Wang
  • Tin Chiu LiEmail author
Chapter

Abstract

Genomic study of the endometrium may shed light on the regulation of embryo implantation and how the process is disrupted in women with reproductive failure. There are several essential requirements in planning a genomic study of the endometrium, including precise timing of endometrial biopsy specimens and the recruitment of not only subjects with a well-defined category of reproductive failure but also a separate population of fertile control subjects. Genomic regulation of implantation may be achieved at various levels, and the measurement of each requires a different analytical method. Current literature data will be summarized.

Keywords

Endometrium Reproductive failure Recurrent miscarriage Recurrent implantation failure 

References

  1. 1.
    Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18(12):1754–67.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Huang J, Qin H, Yang Y, Chen X, Zhang J, Laird S, et al. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage. Reproduction. 2017;153(6):749–58.PubMedCrossRefGoogle Scholar
  3. 3.
    Diaz-Gimeno P, Horcajadas JA, Martinez-Conejero JA, Esteban FJ, Alama P, Pellicer A, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95(1):50–60, e1–15.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hu S, Yao G, Wang Y, Xu H, Ji X, He Y, et al. Transcriptomic changes during the pre-receptive to receptive transition in human endometrium detected by RNA-Seq. J Clin Endocrinol Metab. 2014;99(12):E2744–53.PubMedCrossRefGoogle Scholar
  5. 5.
    Qiao J, Wang L, Li R, Zhang X. Microarray evaluation of endometrial receptivity in Chinese women with polycystic ovary syndrome. Reprod Biomed Online. 2008;17(3):425–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Koot YE, van Hooff SR, Boomsma CM, van Leenen D, Groot Koerkamp MJ, Goddijn M, et al. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF. Sci Rep. 2016;6:19411.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ruiz-Alonso M, Blesa D, Diaz-Gimeno P, Gomez E, Fernandez-Sanchez M, Carranza F, et al. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril. 2013;100(3):818–24.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ledee N, Munaut C, Aubert J, Serazin V, Rahmati M, Chaouat G, et al. Specific and extensive endometrial deregulation is present before conception in IVF/ICSI repeated implantation failures (IF) or recurrent miscarriages. J Pathol. 2011;225(4):554–64.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kosova G, Stephenson MD, Lynch VJ, Ober C. Evolutionary forward genomics reveals novel insights into the genes and pathways dysregulated in recurrent early pregnancy loss. Hum Reprod. 2015;30(3):519–29.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Othman R, Omar MH, Shan LP, Shafiee MN, Jamal R, Mokhtar NM. Microarray profiling of secretory-phase endometrium from patients with recurrent miscarriage. Reprod Biol. 2012;12(2):183–99.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Mirkin S, Nikas G, Hsiu JG, Diaz J, Oehninger S. Gene expression profiles and structural/functional features of the peri-implantation endometrium in natural and gonadotropin-stimulated cycles. J Clin Endocrinol Metab. 2004;89(11):5742–52.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Haouzi D, Assou S, Mahmoud K, Tondeur S, Reme T, Hedon B, et al. Gene expression profile of human endometrial receptivity: comparison between natural and stimulated cycles for the same patients. Hum Reprod. 2009;24(6):1436–45.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Tuckerman E, Mariee N, Prakash A, Li TC, Laird S. Uterine natural killer cells in peri-implantation endometrium from women with repeated implantation failure after IVF. J Reprod Immunol. 2010;87(1–2):60–6.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tuckerman E, Laird SM, Prakash A, Li TC. Prognostic value of the measurement of uterine natural killer cells in the endometrium of women with recurrent miscarriage. Hum Reprod. 2007;22(8):2208–13.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Germeyer A, Savaris RF, Jauckus J, Lessey B. Endometrial beta3 integrin profile reflects endometrial receptivity defects in women with unexplained recurrent pregnancy loss. Reprod Biol Endocrinol. 2014;12:53.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Coughlan C, Sinagra M, Ledger W, Li TC, Laird S. Endometrial integrin expression in women with recurrent implantation failure after in vitro fertilization and its relationship to pregnancy outcome. Fertil Steril. 2013;100(3):825–30.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mariee N, Li TC, Laird SM. Expression of leukaemia inhibitory factor and interleukin 15 in endometrium of women with recurrent implantation failure after IVF; correlation with the number of endometrial natural killer cells. Hum Reprod. 2012;27(7):1946–54.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Xu B, Sun X, Li L, Wu L, Zhang A, Feng Y. Pinopodes, leukemia inhibitory factor, integrin-beta3, and mucin-1 expression in the peri-implantation endometrium of women with unexplained recurrent pregnancy loss. Fertil Steril. 2012;98(2):389–95.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Karaer A, Cigremis Y, Celik E, Urhan GR. Prokineticin 1 and leukemia inhibitory factor mRNA expression in the endometrium of women with idiopathic recurrent pregnancy loss. Fertil Steril. 2014;102(4):1091–5 e1.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Brosens JJ, Salker MS, Teklenburg G, Nautiyal J, Salter S, Lucas ES, et al. Uterine selection of human embryos at implantation. Sci Rep. 2014;4:3894.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Teklenburg G, Salker M, Heijnen C, Macklon NS, Brosens JJ. The molecular basis of recurrent pregnancy loss: impaired natural embryo selection. Mol Hum Reprod. 2010;16(12):886–95.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Macklon NS, Brosens JJ. The human endometrium as a sensor of embryo quality. Biol Reprod. 2014;91(4):98.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Mohlin FC, Mercier E, Fremeaux-Bacchi V, Liszewski MK, Atkinson JP, Gris JC, et al. Analysis of genes coding for CD46, CD55, and C4b-binding protein in patients with idiopathic, recurrent, spontaneous pregnancy loss. Eur J Immunol. 2013;43(6):1617–29.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Salmon JE, Heuser C, Triebwasser M, Liszewski MK, Kavanagh D, Roumenina L, et al. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. PLoS Med. 2011;8(3):e1001013.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ruan YC, Chen H, Chan HC. Ion channels in the endometrium: regulation of endometrial receptivity and embryo implantation. Hum Reprod Update. 2014;20(4):517–29.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Thie M, Denker H-W. In vitro studies on endometrial adhesiveness for trophoblast: cellular dynamics in uterine epithelial cells. Cells Tissues Organs. 2002;172(3):237–52.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Nawy T. Single-cell sequencing. Nat Methods. 2014;11(1):18.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lasken RS. Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol. 2007;10(5):510–6.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Shintaku H, Nishikii H, Marshall LA, Kotera H, Santiago JG. On-chip separation and analysis of RNA and DNA from single cells. Anal Chem. 2014;86(4):1953–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, Chisholm SW, et al. Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol. 2006;24(6):680–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Chiou PY, Ohta AT, Wu MC. Massively parallel manipulation of single cells and microparticles using optical images. Nature. 2005;436(7049):370–2.PubMedCrossRefGoogle Scholar
  34. 34.
    Hosic S, Murthy SK, Koppes AN. Microfluidic sample preparation for single cell analysis. Anal Chem. 2016;88(1):354–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol. 2018;18(1):35–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat Rev Cancer. 2017;17(9):557–69.PubMedCrossRefGoogle Scholar
  37. 37.
    Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992;13(3):718–25.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Nakamura T, Yabuta Y, Okamoto I, Aramaki S, Yokobayashi S, Kurimoto K, et al. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res. 2015;43(9):e60.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338(6114):1622–6.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Vassena R, Eguizabal C, Heindryckx B, Sermon K, Simon C, van Pelt AM, et al. Stem cells in reproductive medicine: ready for the patient? Hum Reprod. 2015;30(9):2014–21.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Krjutskov K, Katayama S, Saare M, Vera-Rodriguez M, Lubenets D, Samuel K, et al. Single-cell transcriptome analysis of endometrial tissue. Hum Reprod. 2016;31(4):844–53.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Weiling F. Historical study: Johann Gregor Mendel 1822-1884. Am J Med Genet. 1991;40(1):1–25; discussion 6.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41(1):10–3.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol. 2014;2:49.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Horsthemke B, Ludwig M. Assisted reproduction: the epigenetic perspective. Hum Reprod Update. 2005;11(5):473–82.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Das L, Parbin S, Pradhan N, Kausar C, Patra SK. Epigenetics of reproductive infertility. Front Biosci (Schol Ed). 2017;9:509–35.CrossRefGoogle Scholar
  48. 48.
    Koukoura O, Sifakis S, Spandidos DA. DNA methylation in the human placenta and fetal growth (review). Mol Med Rep. 2012;5(4):883–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Houshdaran S, Zelenko Z, Irwin JC, Giudice LC. Human endometrial DNA methylome is cycle-dependent and is associated with gene expression regulation. Mol Endocrinol. 2014;28(7):1118–35.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Yamagata Y, Asada H, Tamura I, Lee L, Maekawa R, Taniguchi K, et al. DNA methyltransferase expression in the human endometrium: down-regulation by progesterone and estrogen. Hum Reprod. 2009;24(5):1126–32.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kukushkina V, Modhukur V, Suhorutsenko M, Peters M, Magi R, Rahmioglu N, et al. DNA methylation changes in endometrium and correlation with gene expression during the transition from pre-receptive to receptive phase. Sci Rep. 2017;7(1):3916.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Rahnama F, Thompson B, Steiner M, Shafiei F, Lobie PE, Mitchell MD. Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology. 2009;150(3):1466–72.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wang L, Tan YJ, Wang M, Chen YF, Li XY. DNA methylation inhibitor 5-Aza-2’-deoxycytidine modulates endometrial receptivity through upregulating HOXA10 expression. Reprod Sci. 2019;26(6):839–46.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Xiong Y, Wang J, Liu L, Chen X, Xu H, Li TC, et al. Effects of high progesterone level on the day of human chorionic gonadotrophin administration in in vitro fertilization cycles on epigenetic modification of endometrium in the peri-implantation period. Fertil Steril. 2017;108(2):269–76 e1.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.CrossRefGoogle Scholar
  56. 56.
    Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.CrossRefGoogle Scholar
  57. 57.
    Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci. 2003;983:84–100.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Uchida H, Maruyama T, Arase T, Ono M, Nagashima T, Masuda H, et al. Histone acetylation in reproductive organs: significance of histone deacetylase inhibitors in gene transcription. Reprod Med Biol. 2005;4(2):115–22.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Uchida H, Maruyama T, Nagashima T, Ono M, Masuda H, Arase T, et al. Human endometrial cytodifferentiation by histone deacetylase inhibitors. Hum Cell. 2006;19(1):38–42.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Krusche CA, Vloet AJ, Classen-Linke I, von Rango U, Beier HM, Alfer J. Class I histone deacetylase expression in the human cyclic endometrium and endometrial adenocarcinomas. Hum Reprod. 2007;22(11):2956–66.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Estella C, Herrer I, Atkinson SP, Quinonero A, Martinez S, Pellicer A, et al. Inhibition of histone deacetylase activity in human endometrial stromal cells promotes extracellular matrix remodelling and limits embryo invasion. PLoS One. 2012;7(1):e30508.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Maass N, Biallek M, Rosel F, Schem C, Ohike N, Zhang M, et al. Hypermethylation and histone deacetylation lead to silencing of the maspin gene in human breast cancer. Biochem Biophys Res Commun. 2002;297(1):125–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome. Nat Rev Genet. 2010;11(8):559–71.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Creighton CJ, Benham AL, Zhu H, Khan MF, Reid JG, Nagaraja AK, et al. Discovery of novel microRNAs in female reproductive tract using next generation sequencing. PLoS One. 2010;5(3):e9637.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lam EW, Shah K, Brosens JJ. The diversity of sex steroid action: the role of micro-RNAs and FOXO transcription factors in cycling endometrium and cancer. J Endocrinol. 2012;212(1):13–25.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ramon LA, Braza-Boils A, Gilabert-Estelles J, Gilabert J, Espana F, Chirivella M, et al. microRNAs expression in endometriosis and their relation to angiogenic factors. Hum Reprod. 2011;26(5):1082–90.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26(10):2830–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Petracco R, Grechukhina O, Popkhadze S, Massasa E, Zhou Y, Taylor HS. MicroRNA 135 regulates HOXA10 expression in endometriosis. J Clin Endocrinol Metab. 2011;96(12):E1925–33.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37(1):179–83.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Haig D, Graham C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell. 1991;64(6):1045–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Moore T, Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 1991;7(2):45–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Regha K, Latos PA, Spahn L. The imprinted mouse Igf2r/Air cluster--a model maternal imprinting system. Cytogenet Genome Res. 2006;113(1–4):165–77.PubMedCrossRefGoogle Scholar
  76. 76.
    Tanos V, Ariel I, Prus D, De-Groot N, Hochberg A. H19 and IGF2 gene expression in human normal, hyperplastic, and malignant endometrium. Int J Gynecol Cancer. 2004;14(3):521–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Lee RS, Depree KM, Davey HW. The sheep (Ovis aries) H19 gene: genomic structure and expression patterns, from the preimplantation embryo to adulthood. Gene. 2002;301(1–2):67–77.PubMedCrossRefGoogle Scholar
  78. 78.
    Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961;190:372–3.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Yan PS, Chen CM, Shi H, Rahmatpanah F, Wei SH, Huang TH. Applications of CpG island microarrays for high-throughput analysis of DNA methylation. J Nutr. 2002;132(8 Suppl):2430S–4S.PubMedCrossRefGoogle Scholar
  80. 80.
    Schilling E, Rehli M. Global, comparative analysis of tissue-specific promoter CpG methylation. Genomics. 2007;90(3):314–23.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol. 2008;26(7):779–85.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Butcher LM, Beck S. AutoMeDIP-seq: a high-throughput, whole genome, DNA methylation assay. Methods. 2010;52(3):223–31.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Begemann M, Leisten I, Soellner L, Zerres K, Eggermann T, Spengler S. Use of multilocus methylation-specific single nucleotide primer extension (MS-SNuPE) technology in diagnostic testing for human imprinted loci. Epigenetics. 2012;7(5):473–81.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Konishi Y, Hayashi H, Suzuki H, Yamamoto E, Sugisaki H, Higashimoto H. Comparative analysis of methods to determine DNA methylation levels of a tumor-related microRNA gene. Anal Biochem. 2015;484:66–71.PubMedCrossRefGoogle Scholar
  85. 85.
    Sandmann T, Jakobsen JS, Furlong EE. ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos. Nat Protoc. 2006;1(6):2839–55.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    O’Neill LP, Turner BM. Immunoprecipitation of chromatin. Methods Enzymol. 1996;274:189–97.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Zhu J, Fu H, Wu Y, Zheng X. Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci. 2013;56(10):876–85.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Liu CG, Spizzo R, Calin GA, Croce CM. Expression profiling of microRNA using oligo DNA arrays. Methods. 2008;44(1):22–30.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jin Huang
    • 1
    • 2
  • Ruizhe Zhang
    • 2
  • Chi Chiu Wang
    • 2
  • Tin Chiu Li
    • 3
    Email author
  1. 1.Department of Obstetrics and GynecologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Department of Obstetrics and GynecologyThe Chinese University of Hong KongHong KongChina
  3. 3.Department of Obstetrics and GynaecologyThe Chinese University of Hong Kong, Prince of Wales HospitalHong KongChina

Personalised recommendations