Molecular Biology Techniques for Endometrial Gene Expression: Recent Technological Advances

  • Ke Ni
  • Lijia MaEmail author


The characterization of the endometrium is of great difficulty because of its complicated structure and dynamic change along with the menstrual cycle. Huge labor and high cost are required to get the multidimensional information of endometrium, which limits the comprehensive characterization of the endometrium. The molecular biology advances now allow the high-throughput quantification of the gene expression of the endometrium. In this review, the commonly used techniques for transcriptome profiling are systematically introduced. Furthermore, their applications in the global view of endometrial gene expression under physiological or pathological conditions are summarized. These studies have deepened our understanding of the structure and the periodic change of endometrium, which will guide the clinical activities in the diagnosis and the therapy for endometrial disorders, and even endometrial cancer.


Endometrial characterization Gene expression RNA profiling 


  1. 1.
    Guyton AC, Hall JE. Chapter 81 Female physiology before pregnancy and female hormones. In: Textbook of medical physiology. 11th ed. W.B. Saunder Co.; 2006. p. 1018ff.Google Scholar
  2. 2.
    Strassmann BI. The evolution of endometrial cycles and menstruation. Q Rev Biol. 1996;71(2):181–220.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70.CrossRefGoogle Scholar
  4. 4.
    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Nawy T. Single-cell sequencing. Nat Methods. 2014;11(1):18.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hesse M, Arenz C. MicroRNA maturation and human disease. Methods Mol Biol. 2014;1095:11–25.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Salzman J. Circular RNA expression: its potential regulation and function. Trends Genet. 2016;32(5):309–16.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. 2017;8(1):e1364.CrossRefGoogle Scholar
  14. 14.
    Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 2015;16:126.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73(18):5609–12.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zhao ZJ, Shen J. Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biol. 2017;14(5):514–21.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. 2018;187:31–44.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Holdt LM, Kohlmaier A, Teupser D. Molecular functions and specific roles of circRNAs in the cardiovascular system. Noncoding RNA Res. 2018;3(2):75–98.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324(5924):218–23.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    McFadden EJ, Hargrove AE. Biochemical methods to investigate lncRNA and the influence of lncRNA:protein complexes on chromatin. Biochemistry. 2016;55(11):1615–30.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ponnampalam AP, Weston GC, Trajstman AC, Susil B, Rogers PA. Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol Hum Reprod. 2004;10(12):879–93.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Talbi S, Hamilton AE, Vo KC, Tulac S, Overgaard MT, Dosiou C, et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology. 2006;147(3):1097–121.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sigurgeirsson B, Amark H, Jemt A, Ujvari D, Westgren M, Lundeberg J, et al. Comprehensive RNA sequencing of healthy human endometrium at two time points of the menstrual cycle. Biol Reprod. 2017;96(1):24–33.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Krjutskov K, Katayama S, Saare M, Vera-Rodriguez M, Lubenets D, Samuel K, et al. Single-cell transcriptome analysis of endometrial tissue. Hum Reprod. 2016;31(4):844–53.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wu B, Li Y, Liu Y, Jin K, Zhao K, An C, et al. Cell atlas of human uterus. bioRxiv. 2018.Google Scholar
  26. 26.
    Wang W, Vilella F, Moreno I, Pan W, Simon C, Quake SR. Single cell RNAseq provides a molecular and cellular cartography of changes to the human endometrium through the menstrual cycle. bioRxiv. 2018.Google Scholar
  27. 27.
    Li Z, Bai P, Peng D, Wang H, Guo Y, Jiang Y, et al. Screening and confirmation of microRNA markers for distinguishing between menstrual and peripheral blood. Forensic Sci Int Genet. 2017;30:24–33.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Rekker K, Saare M, Roost AM, Salumets A, Peters M. Circulating microRNA profile throughout the menstrual cycle. PLoS One. 2013;8(11):e81166.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kennedy S, Bergqvist A, Chapron C, D'Hooghe T, Dunselman G, Greb R, et al. ESHRE guideline for the diagnosis and treatment of endometriosis. Hum Reprod. 2005;20(10):2698–704.CrossRefGoogle Scholar
  30. 30.
    Sourial S, Tempest N, Hapangama DK. Theories on the pathogenesis of endometriosis. Int J Reprod Med. 2014;2014:179515.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Colon-Caraballo M, Garcia M, Mendoza A, Flores I. Human endometriosis tissue microarray reveals site-specific expression of estrogen receptors, progesterone receptor, and Ki67. Appl Immunohistochem Mol Morphol. 2019;27(7):491–500.CrossRefGoogle Scholar
  32. 32.
    Ping S, Ma C, Liu P, Yang L, Yang X, Wu Q, et al. Molecular mechanisms underlying endometriosis pathogenesis revealed by bioinformatics analysis of microarray data. Arch Gynecol Obstet. 2016;293(4):797–804.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zhao L, Gu C, Ye M, Zhang Z, Han W, Fan W, et al. Identification of global transcriptome abnormalities and potential biomarkers in eutopic endometria of women with endometriosis: a preliminary study. Biomed Rep. 2017;6(6):654–62.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gilabert-Estelles J, Braza-Boils A, Ramon LA, Zorio E, Medina P, Espana F, et al. Role of microRNAs in gynecological pathology. Curr Med Chem. 2012;19(15):2406–13.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hawkins SM, Creighton CJ, Han DY, Zariff A, Anderson ML, Gunaratne PH, et al. Functional microRNA involved in endometriosis. Mol Endocrinol. 2011;25(5):821–32.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, et al. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol. 2009;23(2):265–75.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Braza-Boils A, Mari-Alexandre J, Gilabert J, Sanchez-Izquierdo D, Espana F, Estelles A, et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod. 2014;29(5):978–88.CrossRefGoogle Scholar
  38. 38.
    Xu XX, Jia SZ, Dai Y, Zhang JJ, Li XY, Shi JH, et al. Identification of circular RNAs as a novel biomarker for ovarian endometriosis. Chin Med J. 2018;131(5):559–66.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Koot YE, van Hooff SR, Boomsma CM, van Leenen D, Groot Koerkamp MJ, Goddijn M, et al. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF. Sci Rep. 2016;6:19411.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tapia-Pizarro A, Figueroa P, Brito J, Marin JC, Munroe DJ, Croxatto HB. Endometrial gene expression reveals compromised progesterone signaling in women refractory to embryo implantation. Reprod Biol Endocrinol. 2014;12:92.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Huang J, Qin H, Yang Y, Chen X, Zhang J, Laird S, et al. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage. Reproduction. 2017;153(6):749–58.CrossRefGoogle Scholar
  42. 42.
    Hu S, Yao G, Wang Y, Xu H, Ji X, He Y, et al. Transcriptomic changes during the pre-receptive to receptive transition in human endometrium detected by RNA-Seq. J Clin Endocrinol Metab. 2014;99(12):E2744–53.CrossRefGoogle Scholar
  43. 43.
    Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26(10):2830–40.CrossRefGoogle Scholar
  44. 44.
    Arend RC, Jones BA, Martinez A, Goodfellow P. Endometrial cancer: molecular markers and management of advanced stage disease. Gynecol Oncol. 2018;150(3):569–80.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Risinger JI, Maxwell GL, Chandramouli GV, Jazaeri A, Aprelikova O, Patterson T, et al. Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res. 2003;63(1):6–11.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Risinger JI, Allard J, Chandran U, Day R, Chandramouli GV, Miller C, et al. Gene expression analysis of early stage endometrial cancers reveals unique transcripts associated with grade and histology but not depth of invasion. Front Oncol. 2013;3:139.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Maxwell GL, Chandramouli GV, Dainty L, Litzi TJ, Berchuck A, Barrett JC, et al. Microarray analysis of endometrial carcinomas and mixed mullerian tumors reveals distinct gene expression profiles associated with different histologic types of uterine cancer. Clin Cancer Res. 2005;11(11):4056–66.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    O'Mara TA, Zhao M, Spurdle AB. Meta-analysis of gene expression studies in endometrial cancer identifies gene expression profiles associated with aggressive disease and patient outcome. Sci Rep. 2016;6:36677.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Shi Z, Li C, Tarwater L, Li J, Li Y, Kaliney W, et al. RNA-seq reveals the overexpression of IGSF9 in endometrial Cancer. J Oncol. 2018;2018:2439527.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lemetre C, Vieites B, Ng CK, Piscuoglio S, Schultheis AM, Marchio C, et al. RNASeq analysis reveals biological processes governing the clinical behaviour of endometrioid and serous endometrial cancers. Eur J Cancer. 2016;64:149–58.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Yanokura M, Banno K, Iida M, Irie H, Umene K, Masuda K, et al. MicroRNAS in endometrial cancer: recent advances and potential clinical applications. EXCLI J. 2015;14:190–8.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Chen BJ, Byrne FL, Takenaka K, Modesitt SC, Olzomer EM, Mills JD, et al. Transcriptome landscape of long intergenic non-coding RNAs in endometrial cancer. Gynecol Oncol. 2017;147(3):654–62.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Hellweg R, Mooneyham A, Chang Z, Shetty M, Emmings E, Iizuka Y, et al. RNA sequencing of carboplatin- and paclitaxel-resistant endometrial cancer cells reveals new stratification markers and molecular targets for cancer treatment. Horm Cancer. 2018;9(5):326–37.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Jayaraman M, Radhakrishnan R, Mathews CA, Yan M, Husain S, Moxley KM, et al. Identification of novel diagnostic and prognostic miRNA signatures in endometrial cancer. Genes Cancer. 2017;8(5–6):566–76.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Hashimoto S, Tabuchi Y, Yurino H, Hirohashi Y, Deshimaru S, Asano T, et al. Comprehensive single-cell transcriptome analysis reveals heterogeneity in endometrioid adenocarcinoma tissues. Sci Rep. 2017;7(1):14225.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer--a survey. Biochim Biophys Acta. 2007;1775(1):181–232.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2.CrossRefGoogle Scholar
  58. 58.
    Zaporozhchenko IA, Ponomaryova AA, Rykova EY, Laktionov PP. The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities. Expert Rev Mol Diagn. 2018;18(2):133–45.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Life SciencesWestlake UniversityHangzhouChina

Personalised recommendations