Advertisement

Metabolic and Nutritional Impact on Endometrial Gene Expression and Reproductive Disorder

  • Lianghui DiaoEmail author
  • Songchen Cai
  • Jinli Ding
  • Yong Zeng
Chapter

Abstract

During pregnancy, a woman’s body undergoes a series of adaptations to nourish the fetus for proper growth in the uterus and prepare the body for childbirth. The physiological and anatomical adaptations take place in various organ systems, such as reproductive, immune, and gastrointestinal systems, and start in the early stage of the first trimester, and some changes even initiate before conception. These changes peak at the third trimester or term, and the restoration to the basal level may take a few weeks after delivery. The significant changes in the body due to pregnancy lead to distinct demands for oxygen, nutrients, and metabolites, which, in turn, reshape the microenvironments in the uterus to facilitate implantation and pregnancy maintenance. The decidual stromal cells and the immune cells are the major players in the maternal-fetal interface. While most of the studies have focused on the metabolism of stromal cells during decidualization, the role of immunometabolism underlying maternal-fetal tolerance remains mostly unknown, and the insights in the context of pregnancy nowadays are mainly inspired by researches from other fields. Direct evidence to support the relationship between cellular function and metabolism came from the observation of metabolic gene expressions in reproductive disorders, metabolic syndromes, and animal models. It should be noticed that limited knowledge of the metabolic reprogramming has impeded the clinical development of a metabolism-related intervention during pregnancy. Here, we summarize the evidence and insights currently known and the open issues that remain to be solved regarding the metabolic and nutritional impact on endometrial gene expression and reproductive disorder.

Keywords

Metabolic reprogramming Nutritional intervention Endometrial gene expression Decidualization Immunometabolism Reproductive disorder 

Notes

Acknowledgments

The writing of this chapter and reference to the authors’ work were made possible through funding by the National Natural Science Foundation of China (No. 81701529), Special Funds for Science and Technology Development of Guangdong Province (2017A020214006), and Sanming Project of Medicine in Shenzhen (SZSM201502035).

Contributions

LH.D. conceived and developed the structure. SC.C. provided the first version of the manuscript, which was amended by JL.D. on the context related to clinical trials, and by LH.D. on the issues related to the interpretation of the published evidence regarding the metabolic pathways, endometrial gene expression, and reproductive disorder. All authors are involved in revised the manuscript and gave their final approval of the version.

References

  1. 1.
    Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014;35(6):851–905.  https://doi.org/10.1210/er.2014-1045.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18(12):1754–67.  https://doi.org/10.1038/nm.3012.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Patil R, Patil SA, Beaman KD, Patil SA. Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents, an update (2013-2015). Future Med Chem. 2016;8(11):1291–316.  https://doi.org/10.4155/fmc-2016-0047.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Manaster I, Mizrahi S, Goldman-Wohl D, Sela HY, Stern-Ginossar N, Lankry D, et al. Endometrial NK cells are special immature cells that await pregnancy. J Immunol. 2008;181(3):1869–76.CrossRefGoogle Scholar
  5. 5.
    Rätsep MT, Felker AM, Kay VR, Tolusso L, Hofmann AP, BA C. Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction. 2015;149(2):R91–R102.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Nagamatsu T, Schust DJ. The contribution of macrophages to normal and pathological pregnancies. Am J Reprod Immunol. 2010;63(6):460–71.  https://doi.org/10.1111/j.1600-0897.2010.00813.x.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Plaks V, Birnberg T, Berkutzki T, Sela S, BenYashar A, Kalchenko V, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest. 2008;118(12):3954–65.  https://doi.org/10.1172/JCI36682.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Corthay A. How do regulatory T cells work? Scand J Immunol. 2009;70(4):326–36.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5(3):266–71.  https://doi.org/10.1038/ni1037.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Thiele K, Diao L, Arck PC. Immunometabolism, pregnancy, and nutrition. Semin Immunopathol. 2018;40(2):157–74.  https://doi.org/10.1007/s00281-017-0660-y.CrossRefPubMedGoogle Scholar
  11. 11.
    Frolova AI, Moley KH. Quantitative analysis of glucose transporter mRNAs in endometrial stromal cells reveals critical role of GLUT1 in uterine receptivity. Endocrinology. 2011;152(5):2123–8.  https://doi.org/10.1210/en.2010-1266.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Frolova A, Flessner L, Chi M, Kim ST, Foyouzi-Yousefi N, Moley KHJE. Facilitative glucose transporter type 1 is differentially regulated by progesterone and estrogen in murine and human endometrial stromal cells. Endocrinology. 2008;150(3):1512–20.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zuo RJ, Gu XW, Qi QR, Wang TS, Zhao XY, Liu JL, et al. Warburg-like glycolysis and lactate shuttle in mouse decidua during early pregnancy. J Biol Chem. 2015;290(35):21280–91.  https://doi.org/10.1074/jbc.M115.656629.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rodríguez-Prados J-C, Través PG, Cuenca J, Rico D, Aragonés J, Martín-Sanz P, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol. 2010;185(1):605–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, RJ DB, et al. Toll-like receptor–induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115(23):4742–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Donnelly RP, Loftus RM, Keating SE, Liou KT, Biron CA, Gardiner CM, et al. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J Immunol. 2014;193(9):4477–84.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299–303.  https://doi.org/10.4049/jimmunol.1003613.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gubser PM, Bantug GR, Razik L, Fischer M, Dimeloe S, Hoenger G, et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat Immunol. 2013;14(10):1064–72.  https://doi.org/10.1038/ni.2687.CrossRefPubMedGoogle Scholar
  19. 19.
    Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208(7):1367–76.  https://doi.org/10.1084/jem.20110278.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Doughty CA, Bleiman BF, Wagner DJ, Dufort FJ, Mataraza JM, Roberts MF, et al. Antigen receptor–mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood. 2006;107(11):4458–65.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Angelin A, Gil-de-Gomez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3 reprograms t cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017;25(6):1282–93. e7.  https://doi.org/10.1016/j.cmet.2016.12.018.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Frolova AI, O’neill K, Moley KH. Dehydroepiandrosterone inhibits glucose flux through the pentose phosphate pathway in human and mouse endometrial stromal cells, preventing decidualization and implantation. Mol Endocrinol. 2011;25(8):1444–55.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Infect Microbiol. 2017;7:373.  https://doi.org/10.3389/fcimb.2017.00373.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Xu Q, Choksi S, Qu J, Jang J, Choe M, Banfi B, et al. NADPH oxidases are essential for macrophage differentiation. J Biol Chem. 2016;291(38):20030–41.  https://doi.org/10.1074/jbc.M116.731216.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kirsch M, De Groot H. NAD(P)H, a directly operating antioxidant? FASEB J. 2001;15(9):1569–74.PubMedCrossRefGoogle Scholar
  26. 26.
    Lei W, Feng X-H, Deng W-B, Ni H, Zhang Z-R, Jia B, et al. Progesterone and DNA damage encourage uterine cell proliferation and decidualization through up-regulating ribonucleotide reductase 2 expression during early pregnancy in mice. J Biol Chem. 2012;287(19):15174–92.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    O’Sullivan D, van der Windt GJ, Huang SC-C, Curtis JD, Chang C-H, Buck MD, et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity. 2014;41(1):75–88.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Infantino V, Convertini P, Cucci L, Panaro MA, Di Noia MA, Calvello R, et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem J. 2011;438(3):433–6.  https://doi.org/10.1042/BJ20111275.CrossRefPubMedGoogle Scholar
  29. 29.
    Critchley HO, Osei J, Henderson TA, Boswell L, Sales KJ, Jabbour HN, et al. Hypoxia-inducible factor-1alpha expression in human endometrium and its regulation by prostaglandin E-series prostanoid receptor 2 (EP2). Endocrinology. 2006;147(2):744–53.  https://doi.org/10.1210/en.2005-1153.CrossRefPubMedGoogle Scholar
  30. 30.
    Rehman KS, Yin S, Mayhew BA, Word RA, Rainey WE. Human myometrial adaptation to pregnancy: cDNA microarray gene expression profiling of myometrium from non-pregnant and pregnant women. Mol Hum Reprod. 2003;9(11):681–700.PubMedCrossRefGoogle Scholar
  31. 31.
    Paquette A, Baloni P, Holloman AB, Nigam S, Bammler T, Mao Q, et al. Temporal transcriptomic analysis of metabolic genes in maternal organs and placenta during murine pregnancy. Biol Reprod. 2018;99(6):1255–65.  https://doi.org/10.1093/biolre/ioy148.CrossRefPubMedGoogle Scholar
  32. 32.
    Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest. 2015;125(1):194–207.  https://doi.org/10.1172/JCI76012.CrossRefPubMedGoogle Scholar
  33. 33.
    Tsai JH, Chi MM, Schulte MB, Moley KH. The fatty acid beta-oxidation pathway is important for decidualization of endometrial stromal cells in both humans and mice. Biol Reprod. 2014;90(2):34.  https://doi.org/10.1095/biolreprod.113.113217.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Posokhova E, Khoshchenko O, Chasovskikh M, Pivovarova E, M D. Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors α and γ and of retinoid X receptors. Biochemistry (Mosc). 2008;73(3):296.CrossRefGoogle Scholar
  35. 35.
    Wang C, Yosef N, Gaublomme J, Wu C, Lee Y, Clish CB, et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell. 2015;163(6):1413–27.  https://doi.org/10.1016/j.cell.2015.10.068.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pizer ES, Kurman RJ, Pasternack GR, Kuhajda FP. Expression of fatty acid synthase is closely linked to proliferation and stromal decidualization in cycling endometrium. Int J Gynecol Pathol. 1997;16(1):45–51.  https://doi.org/10.1097/00004347-199701000-00008.CrossRefPubMedGoogle Scholar
  37. 37.
    Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol. 2010;185(2):1037–44.  https://doi.org/10.4049/jimmunol.0903586.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cobbold SP, Adams E, Farquhar CA, Nolan KF, Howie D, Lui KO, et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U S A. 2009;106(29):12055–60.  https://doi.org/10.1073/pnas.0903919106.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol. 2003;81(4):247–65.  https://doi.org/10.1046/j.1440-1711.2003.t01-1-01177.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Yoshida R, Imanishi J, Oku T, Kishida T, Hayaishi O. Induction of pulmonary indoleamine 2,3-dioxygenase by interferon. Proc Natl Acad Sci U S A. 1981;78(1):129–32.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189(9):1363–72.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology. 2002;107(4):452–60.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Bourdiec A, Calvo E, Rao C, Akoum A. Transcriptome analysis reveals new insights into the modulation of endometrial stromal cell receptive phenotype by embryo-derived signals interleukin-1 and human chorionic gonadotropin: possible involvement in early embryo implantation. PLoS One. 2013;8(5):e64829.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Garrido-Gómez T, Ruiz-Alonso M, Blesa D, Diaz-Gimeno P, Vilella F, C S, et al. Profiling the gene signature of endometrial receptivity: clinical results. Fertil Steril. 2013;99(4):1078–85.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Maekawa R, Taketani T, Mihara Y, Sato S, Okada M, Tamura I, et al. Thin endometrium transcriptome analysis reveals a potential mechanism of implantation failure. Reprod Med Biol. 2017;16(2):206–27.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Frolova AI, Moley KH. Glucose transporters in the uterus: an analysis of tissue distribution and proposed physiological roles. Reproduction. 2011;142(2):211–20.  https://doi.org/10.1530/REP-11-0114.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schulte MM, Tsai JH, Moley KH. Obesity and PCOS: the effect of metabolic derangements on endometrial receptivity at the time of implantation. Reprod Sci. 2015;22(1):6–14.  https://doi.org/10.1177/1933719114561552.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kim JY, Song H, Kim H, Kang HJ, Jun JH, Hong SR, et al. Transcriptional profiling with a pathway-oriented analysis identifies dysregulated molecular phenotypes in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2009;94(4):1416–26.  https://doi.org/10.1210/jc.2008-1612.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Azziz R, Black V, Knochenhauer E, Hines G, Boots L. Ovulation after glucocorticoid suppression of adrenal androgens in the polycystic ovary syndrome is not predicted by the basal dehydroepiandrosterone sulfate level. J Clin Endocrinol Metab. 1999;84(3):946–50.PubMedGoogle Scholar
  51. 51.
    Ehrmann DA, Barnes RB, Rosenfield RL, Cavaghan MK, Imperial J. Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. Diabetes Care. 1999;22(1):141–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Cakmak H, Taylor HS. Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update. 2011;17(2):242–53.  https://doi.org/10.1093/humupd/dmq037.CrossRefPubMedGoogle Scholar
  53. 53.
    Peyghambari F, Fayazi M, Amanpour S, Haddadi M, Muhammadnejad S, Muhammadnejad A, et al. Assessment of α4, αv, β1 and β3 integrins expression throughout the implantation window phase in endometrium of a mouse model of polycystic ovarian syndromes. Iran J Reprod Med. 2014;12(10):687.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Apparao KB, Lovely LP, Gui Y, Lininger RA, Lessey BA. Elevated endometrial androgen receptor expression in women with polycystic ovarian syndrome. Biol Reprod. 2002;66(2):297–304.PubMedCrossRefGoogle Scholar
  55. 55.
    Cermik D, Selam B, Taylor HS. Regulation of HOXA-10 expression by testosterone in vitro and in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88(1):238–43.  https://doi.org/10.1210/jc.2002-021072.CrossRefPubMedGoogle Scholar
  56. 56.
    Regan L, Owen EJ, Jacobs HS. Hypersecretion of luteinising hormone, infertility, and miscarriage. Lancet. 1990;336(8724):1141–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Jalilian N, Haghnazari L, Rasolinia S. Leptin and body mass index in polycystic ovary syndrome. Indian J Endocrinol Metab. 2016;20(3):324–8.  https://doi.org/10.4103/2230-8210.180005.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Shin HY, Lee DC, Lee JW. Adiponectin in women with polycystic ovary syndrome. Korean J Fam Med. 2011;32(4):243–8.  https://doi.org/10.4082/kjfm.2011.32.4.243.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Toulis KA, Goulis DG, Farmakiotis D, Georgopoulos NA, Katsikis I, Tarlatzis BC, et al. Adiponectin levels in women with polycystic ovary syndrome: a systematic review and a meta-analysis. Hum Reprod Update. 2009;15(3):297–307.  https://doi.org/10.1093/humupd/dmp006.CrossRefPubMedGoogle Scholar
  60. 60.
    Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014;10(8):466–80.  https://doi.org/10.1038/nrneph.2014.102.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Tal R. The role of hypoxia and hypoxia-inducible factor-1alpha in preeclampsia pathogenesis. Biol Reprod. 2012;87(6):134.  https://doi.org/10.1095/biolreprod.112.102723.CrossRefPubMedGoogle Scholar
  62. 62.
    Rajakumar A, Brandon HM, Daftary A, Ness R, Conrad KP. Evidence for the functional activity of hypoxia-inducible transcription factors overexpressed in preeclamptic placentae. Placenta. 2004;25(10):763–9.  https://doi.org/10.1016/j.placenta.2004.02.011.CrossRefPubMedGoogle Scholar
  63. 63.
    Tal R, Shaish A, Barshack I, Polak-Charcon S, Afek A, Volkov A, et al. Effects of hypoxia-inducible factor-1α overexpression in pregnant mice: possible implications for preeclampsia and intrauterine growth restriction. Am J Pathol. 2010;177(6):2950–62.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Schulte M, Cusumano A, Zhang W, Kettle-Oestreich A, Moley KH. Impaired autophagy contributes to obese patients decreased ability to undergo in vitro decidualization. Article in Fertil Steril. 2017;107(3):e4–5.CrossRefGoogle Scholar
  65. 65.
    Rhee JS, Saben JL, Mayer AL, Schulte MB, Asghar Z, Stephens C, et al. Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy. Hum Reprod. 2016;31(6):1315–26.  https://doi.org/10.1093/humrep/dew048.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cheng Y, Lv Q, Xie B, Yang B, Shan W, Ning C, et al. Estrogen and high-fat diet induced alterations in C57BL/6 mice endometrial transcriptome profile. Endocr Connect. 2018;7(1):36–46.  https://doi.org/10.1530/EC-17-0315.CrossRefPubMedGoogle Scholar
  67. 67.
    Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382(6588):250–2.  https://doi.org/10.1038/382250a0.CrossRefPubMedGoogle Scholar
  68. 68.
    Dos Santos E, Serazin V, Morvan C, Torre A, Wainer R, de Mazancourt P, et al. Adiponectin and leptin systems in human endometrium during window of implantation. Fertil Steril. 2012;97(3):771–8. e1.  https://doi.org/10.1016/j.fertnstert.2011.12.042.CrossRefPubMedGoogle Scholar
  69. 69.
    Smolinska N, Szeszko K, Dobrzyn K, Kiezun M, Rytelewska E, Kisielewska K, et al. Transcriptomic analysis of porcine endometrium during implantation after in vitro stimulation by adiponectin. Int J Mol Sci. 2019;20(6):1335.  https://doi.org/10.3390/ijms20061335.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Yang YJ, Cao YJ, Bo SM, Peng S, Liu WM, Duan EK. Leptin-directed embryo implantation: leptin regulates adhesion and outgrowth of mouse blastocysts and receptivity of endometrial epithelial cells. Anim Reprod Sci. 2006;92(1–2):155–67.  https://doi.org/10.1016/j.anireprosci.2005.05.019.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells. 2014;37(5):365.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F, et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol. 2010;185(3):1836–45.  https://doi.org/10.4049/jimmunol.1000021.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914–20.  https://doi.org/10.1038/nm.1964.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Procaccini C, Galgani M, De Rosa V, Matarese G. Intracellular metabolic pathways control immune tolerance. Trends Immunol. 2012;33(1):1–7.  https://doi.org/10.1016/j.it.2011.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gabriel G, Arck PC. Sex, immunity and influenza. J Infect Dis. 2014;209 Suppl 3(suppl_3):S93–9.  https://doi.org/10.1093/infdis/jiu020.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Engels G, Hierweger AM, Hoffmann J, Thieme R, Thiele S, Bertram S, et al. Pregnancy-related immune adaptation promotes the emergence of highly virulent h1n1 influenza virus strains in allogenically pregnant mice. Cell Host Microbe. 2017;21(3):321–33.  https://doi.org/10.1016/j.chom.2017.02.020.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    van Riel D, Mittrücker H-W, Engels G, Klingel K, Markert UR, Gabriel G, editors. Influenza pathogenicity during pregnancy in women and animal models. Seminars in immunopathology. Berlin, Heidelberg: Springer; 2016.Google Scholar
  78. 78.
    Mor G, Cardenas I, Abrahams V, Guller SJ. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221(1):80–7.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Dekel N, Gnainsky Y, Granot I, Mor G. Inflammation and implantation. Am J Reprod Immunol. 2010;63(1):17–21.  https://doi.org/10.1111/j.1600-0897.2009.00792.x.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kim J. Regulation of immune cell functions by metabolic reprogramming. J Immunol Res. 2018;2018:8605471.  https://doi.org/10.1155/2018/8605471.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Shin JM, Sachs G. Pharmacology of proton pump inhibitors. Curr Gastroenterol Rep. 2008;10(6):528–34.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Goodman M, Liu Z, Zhu P, Li J. AMPK Activators as a drug for diabetes, cancer and cardiovascular disease. Pharm Regul Aff. 2014;3(2)  https://doi.org/10.4172/2167-7689.1000118.
  83. 83.
    Metwally M, Amer S, Li TC, Ledger WL. An RCT of metformin versus orlistat for the management of obese anovulatory women. Hum Reprod. 2009;24(4):966–75.  https://doi.org/10.1093/humrep/den454.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Sakumoto T, Tokunaga Y, Tanaka H, Nohara M, Motegi E, Shinkawa T, et al. Insulin resistance/hyperinsulinemia and reproductive disorders in infertile women. Reprod Med Biol. 2010;9(4):185–90.  https://doi.org/10.1007/s12522-010-0062-5.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Attia GR, Rainey WE, Carr BR. Metformin directly inhibits androgen production in human thecal cells. Fertil Steril. 2001;76(3):517–24.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Jakubowicz DJ, Iuorno MJ, Jakubowicz S, Roberts KA, Nestler JE. Effects of metformin on early pregnancy loss in the polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87(2):524–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Glueck CJ, Wang P, Goldenberg N, Sieve-Smith LJ. Pregnancy outcomes among women with polycystic ovary syndrome treated with metformin. Hum Reprod. 2002;17(11):2858–64.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 2004;64(6):2070–5.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Seguin F, Carvalho MA, Bastos DC, Agostini M, Zecchin KG, Alvarez-Flores MP, et al. The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas. Br J Cancer. 2012;107(6):977–87.  https://doi.org/10.1038/bjc.2012.355.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Källén BA. Antiobesity drugs in early pregnancy and congenital malformations in the offspring. Obes Res Clin Pract. 2014;8(6):e571–e6.PubMedCrossRefGoogle Scholar
  91. 91.
    Kommagani R, Szwarc MM, Kovanci E, Gibbons WE, Putluri N, Maity S, et al. Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization. PLoS Genet. 2013;9(10):e1003900.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Merchan JR, Kovacs K, Railsback JW, Kurtoglu M, Jing Y, Pina Y, et al. Antiangiogenic activity of 2-deoxy-D-glucose. PLoS One. 2010;5(10):e13699.  https://doi.org/10.1371/journal.pone.0013699.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Dréau D, Morton DS, Foster M, Swiggett JP, Sonnenfeld GJP. Immune alterations in male and female mice after 2-deoxy-D-glucose administration. Physiol Behav. 1997;62(6):1325–31.PubMedCrossRefGoogle Scholar
  94. 94.
    O’Connor RS, Guo L, Ghassemi S, Snyder NW, Worth AJ, Weng L, et al. The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations. Sci Rep. 2018;8(1):6289.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Council NR. Weight gain during pregnancy: reexamining the guidelines. Washington, DC: National Academies Press; 2010.Google Scholar
  96. 96.
    Zglejc K, Martyniak M, Waszkiewicz E, Kotwica G, Franczak A. Peri-conceptional under-nutrition alters transcriptomic profile in the endometrium during the peri-implantation period-the study in domestic pigs. Reprod Domest Anim. 2018;53(1):74–84.  https://doi.org/10.1111/rda.13068.CrossRefPubMedGoogle Scholar
  97. 97.
    Bagés-Arnal S, Fernández-Fuertes B, Passaro C, Maicas C, McDonald M, Byrne CJ, et al. 43 Effect of early life nutrition on endometrial gland development and endometrial gene expression in heifers. Reprod Fertility Develop. 2019;31(1):147.  https://doi.org/10.1071/RDv31n1Ab43.CrossRefGoogle Scholar
  98. 98.
    Kermack AJ, Finn-Sell S, Cheong YC, Brook N, Eckert JJ, Macklon NS, et al. Amino acid composition of human uterine fluid: association with age, lifestyle and gynaecological pathology. Hum Reprod. 2015;30(4):917–24.  https://doi.org/10.1093/humrep/dev008.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Cohen S, Danzaki K, NJ MI. Nutritional effects on T-cell immunometabolism. Eur J Immunol. 2017;47(2):225–35.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lauterbach MA, Wunderlich FT. Macrophage function in obesity-induced inflammation and insulin resistance. Pflugers Arch. 2017;469(3–4):385–96.  https://doi.org/10.1007/s00424-017-1955-5.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med. 2011;17(5):610.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Silha JV, Krsek M, Skrha JV, Sucharda P, Nyomba BL, Murphy LJ. Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. Eur J Endocrinol. 2003;149(4):331–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Liu Y, Wang Q, Pan YB, Gao ZJ, Liu YF, Chen SH. Effects of over-expressing resistin on glucose and lipid metabolism in mice. J Zhejiang Univ Sci B. 2008;9(1):44–50.  https://doi.org/10.1631/jzus.B071479.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307–12.  https://doi.org/10.1038/35053000.CrossRefPubMedGoogle Scholar
  105. 105.
    Kuzmicki M, Telejko B, Szamatowicz J, Zonenberg A, Nikolajuk A, Kretowski A, et al. High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecol Endocrinol. 2009;25(4):258–63.  https://doi.org/10.1080/09513590802653825.CrossRefPubMedGoogle Scholar
  106. 106.
    Lobo TF, Torloni MR, Gueuvoghlanian-Silva BY, Mattar R, Daher S. Resistin concentration and gestational diabetes: a systematic review of the literature. J Reprod Immunol. 2013;97(1):120–7.  https://doi.org/10.1016/j.jri.2012.10.004.CrossRefPubMedGoogle Scholar
  107. 107.
    Malik NM, Carter ND, Murray JF, Scaramuzzi RJ, Wilson CA, Stock MJ. Leptin requirement for conception, implantation, and gestation in the mouse. Endocrinology. 2001;142(12):5198–202.  https://doi.org/10.1210/endo.142.12.8535.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lianghui Diao
    • 1
    Email author
  • Songchen Cai
    • 1
  • Jinli Ding
    • 2
  • Yong Zeng
    • 1
  1. 1.Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and GeneticsShenzhen Zhongshan Urology HospitalShenzhenChina
  2. 2.Reproductive Medical Center, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic DevelopmentRenmin Hospital of Wuhan UniversityWuhanChina

Personalised recommendations