MicroRNA and Endometriosis

  • Swati Agrawal
  • Christian M. BeckerEmail author


Endometriosis is one of the most common benign gynecological disorders characterized by the presence of endometrial glands and stroma in extrauterine locations. It is associated with severe pain and infertility, and it has an enormous medical and economic burden on the society mainly due to the lack of a noninvasive test delaying its diagnosis. The recent discovery of microRNAs (miRNAs) as modulators of gene expression and their stability and specificity make them an attractive candidate as a biomarker. Tissue and circulating miRNAs have been proved to be helpful in the early diagnosis of various diseases. They have also been widely studied in endometriosis and are found to be responsible for the gene expression implicated in the development of the disease. Although the condition is multifactorial with complex pathogenesis, no specific miRNA or a group of them could be proven to be a useful biomarker. Also, the levels of miRNAs are influenced by multiple factors including ethnicity, age, body site, phase of the menstrual cycle, and the methods of detection. Moreover, there are a lot of challenges associated with isolating miRNAs and their levels. These factors account for the lack of concordance between the various studies. Many potential miRNAs have been found, and few of them are consistently dysregulated in most of the studies. Here, we will be elaborating on miR-200 family which plays an essential role in the pathogenesis of endometriosis. Discovery of a reliable biomarker will bring us a step closer to diagnosing endometriosis noninvasively and eliminating the lag phase.


Endometriosis Endometrioma MicroRNA Biomarker Gene regulation 


  1. 1.
    Giudice LC, Kao LC. Endometriosis. Lancet (London, England). 2004;364(9447):1789–99.CrossRefGoogle Scholar
  2. 2.
    Guo S-W, Wang Y. The prevalence of endometriosis in women with chronic pelvic pain. Gynecol Obstet Investig. 2006;62(3):121–30.CrossRefGoogle Scholar
  3. 3.
    Meuleman C, Vandenabeele B, Fieuws S, Spiessens C, Timmerman D, D’Hooghe T. High prevalence of endometriosis in infertile women with normal ovulation and normospermic partners. Fertil Steril. 2009;92(1):68–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Viganò P. Endometriosis. Nat Rev Dis Prim. 2018;4(1):9.PubMedCrossRefGoogle Scholar
  5. 5.
    Kennedy S, Bergqvist A, Chapron C, D’Hooghe T, Dunselman G, Greb R, et al. ESHRE guideline for the diagnosis and treatment of endometriosis. Hum Reprod. 2005;20(10):2698–704.PubMedCrossRefGoogle Scholar
  6. 6.
    Nnoaham KE, Hummelshoj L, Webster P, D’Hooghe T, de Cicco NF, de Cicco NC, et al. Impact of endometriosis on quality of life and work productivity: a multicenter study across ten countries. Fertil Steril. 2011;96(2):366–373.e8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hadfield R, Mardon H, Barlow D, Kennedy S. Delay in the diagnosis of endometriosis: a survey of women from the USA and the UK. Hum Reprod. 1996;11(4):878–80.PubMedCrossRefGoogle Scholar
  8. 8.
    May KE, Conduit-Hulbert SA, Villar J, Kirtley S, Kennedy SH, Becker CM. Peripheral biomarkers of endometriosis: a systematic review. Hum Reprod Update. 2010;16(6):651–74.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW, Zondervan KT. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update. 2014;20(5):702–16.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zondervan KT, Rahmioglu N, Morris AP, Nyholt DR, Montgomery GW, Becker CM, et al. Beyond endometriosis genome-wide association study: from genomics to phenomics to the patient. Semin Reprod Med. 2016;34(4):242–54.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hsiao K-Y, Wu M-H, Tsai S-J. Epigenetic regulation of the pathological process in endometriosis. Reprod Med Biol. 2017;16(4):314–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ohlsson Teague EMC, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, et al. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol. 2009;23(2):265–75.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Guarnieri DJ, DiLeone RJ. MicroRNAs: a new class of gene regulators. Ann Med. 2008;40(3):197–208.PubMedCrossRefGoogle Scholar
  15. 15.
    Bartel DP, Lee R, Feinbaum R. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang T, Zhang X, Obijuru L, Laser J, Aris V, Lee P, et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer. 2007;46(4):336–47.PubMedCrossRefGoogle Scholar
  17. 17.
    Marsh EE, Lin Z, Yin P, Milad M, Chakravarti D, Bulun SE. Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil Steril. 2008;89(6):1771–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Chung TK, Cheung TH, Huen NY, Wong KW, Lo KW, Yim SF, et al. Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int J Cancer. 2009;124(6):1358–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A. 2008;105(19):7004–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Creighton CJ, Fountain MD, Yu Z, Nagaraja AK, Zhu H, Khan M, et al. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res. 2010;70(5):1906–15.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG, et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010;24(2):447–63.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.PubMedCrossRefGoogle Scholar
  23. 23.
    Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2018;47(D1):D155–62.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Panwar B, Omenn GS, Guan Y. miRmine: a database of human miRNA expression profiles. Bioinformatics. 2017;33(10):1554–60.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Lee B, Ryu D, Chang H, Choi I, Jang I, Ko M, et al. miRGator v3.0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res. 2012;41(D1):D252–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Meese E, Ludwig N, Leidinger P, Rheinheimer S, Becker K, Backes C, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44(8):3865–77.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. United States. 2005;120:15–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Grun D, Wang Y-L, Langenberger D, Gunsalus KC, Rajewsky N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol. 2005;1(1):e13.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14(10A):1902–10.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11(3):241–7.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lee Y, Kim M, Han J, Yeom K-H, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957–66.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Gregory RI, Yan K-P, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235–40.PubMedCrossRefGoogle Scholar
  38. 38.
    Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature. 2004;432(7014):231–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Park J-E, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature. 2011;475(7355):201–5.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631–40.CrossRefGoogle Scholar
  44. 44.
    Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101(1):25–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Skog J, Wurdinger T, van Rijn S, Meijer D, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and protein that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59(1):S1–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Bonini P, Plebani M, Ceriotti F, Rubboli F. Errors in laboratory medicine. Clin Chem. 2002;48(5):691–8.PubMedGoogle Scholar
  50. 50.
    Becker N, Lockwood CM. Pre-analytical variables in miRNA analysis. Clin Biochem. 2013;46(10–11):861–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010;82(4):791–801.PubMedCrossRefGoogle Scholar
  52. 52.
    Ruiz-Alonso M, Blesa D, Simón C. The genomics of the human endometrium. Biochim Biophys Acta Mol basis Dis. 2012;1822(12):1931–42.CrossRefGoogle Scholar
  53. 53.
    Braza-Boils A, Mari-Alexandre J, Gilabert J, Sanchez-Izquierdo D, Espana F, Estelles A, et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod. 2014;29(5):978–88.PubMedCrossRefGoogle Scholar
  54. 54.
    Sha A-G, Liu J-L, Jiang X-M, Ren J-Z, Ma C-H, Lei W, et al. Genome-wide identification of micro-ribonucleic acids associated with human endometrial receptivity in natural and stimulated cycles by deep sequencing. Fertil Steril. 2011;96(1):150–155.e5.PubMedCrossRefGoogle Scholar
  55. 55.
    Altmae S, Martinez-Conejero JA, Esteban FJ, Ruiz-Alonso M, Stavreus-Evers A, Horcajadas JA, et al. MicroRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivity. Reprod Sci. 2013;20(3):308–17.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Saare M, Rekker K, Laisk-Podar T, Soritsa D, Roost AM, Simm J, et al. High-throughput sequencing approach uncovers the miRNome of peritoneal endometriotic lesions and adjacent healthy tissues. PLoS One. 2014;9(11):e112630.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Sweeney TE, Suliman HB, Hollingsworth JW, Piantadosi CA. Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis. PLoS One. 2010;5(7):e11606.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    De Faria O, Moore CS, Kennedy TE, Antel JP, Bar-Or A, Dhaunchak AS. MicroRNA dysregulation in multiple sclerosis. Front Genet. 2012;3:311.PubMedGoogle Scholar
  59. 59.
    Kumar M, Nerurkar VR. Integrated analysis of microRNAs and their disease related targets in the brain of mice infected with West Nile virus. Virology. 2014;452-453:143–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Andersen HH, Duroux M, Gazerani P. MicroRNAs as modulators and biomarkers of inflammatory and neuropathic pain conditions. Neurobiol Dis. 2014;71:159–68.PubMedCrossRefGoogle Scholar
  61. 61.
    Zubrzycka A, Zubrzycki M, Janecka A, Zubrzycka M, Zhu L, Sun L, et al. Circulating microRNAs as potential biomarkers for endometriosis. Bronson R, editor. PLoS One. 2015;6(4):278A.Google Scholar
  62. 62.
    Ramon LA, Braza-Boils A, Gilabert J, Chirivella M, Espana F, Estelles A, et al. microRNAs related to angiogenesis are dysregulated in endometrioid endometrial cancer. Hum Reprod. 2012;27:3036–45.PubMedCrossRefGoogle Scholar
  63. 63.
    Hawkins SM, Creighton CJ, Han DY, Zariff A, Anderson ML, Gunaratne PH, et al. Functional MicroRNA involved in endometriosis. Mol Endocrinol. 2011;25(5):821–32.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mari-Alexandre J, Garcia-Oms J, Barcelo-Molina M, Gilabert-Aguilar J, Estelles A, Braza-Boils A, et al. MicroRNAs and angiogenesis in endometriosis. Thromb Res. 2015;135:S38–40.PubMedCrossRefGoogle Scholar
  65. 65.
    Agrawal S, Tapmeier T, Rahmioglu N, Kirtley S, Zondervan K, Becker C. The miRNA mirage: how close are we to finding a non-invasive diagnostic biomarker in endometriosis? A systematic review. Int J Mol Sci. 2018;19(2):599.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Ohlsson Teague EMC, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, et al. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol. 2009;23(2):265–75.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Burney RO, Hamilton AE, Aghajanova L, Vo KC, Nezhat CN, Lessey BA, et al. MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol Hum Reprod. 2009;15(10):625–31.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Filigheddu N, Gregnanin I, Porporato PE, Surico D, Perego B, Galli L, et al. Differential expression of micrornas between eutopic and ectopic endometrium in ovarian endometriosis. J Biomed Biotechnol. 2010;2010:369549.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Petracco R, Grechukhina O, Popkhadze S, Massasa E, Zhou Y, Taylor HS. MicroRNA 135 regulates HOXA10 expression in endometriosis. J Clin Endocrinol Metab. 2011;96(12):E1925–33.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ramon LA, Braza-Boils A, Gilabert-Estelles J, Gilabert J, Espana F, Chirivella M, et al. microRNAs expression in endometriosis and their relation to angiogenic factors. Hum Reprod. 2011;26(5):1082–90.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Dai L, Gu L, Di W. MiR-199a attenuates endometrial stromal cell invasiveness through suppression of the IKKbeta/nf-kappab pathway and reduced interleukin-8 expression. Mol Hum Reprod. 2012;18(3):136–45.PubMedCrossRefGoogle Scholar
  72. 72.
    Lin S-C, Wang C-C, Wu M-H, Yang S-H, Li Y-H, Tsai S-J. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J Clin Endocrinol Metab. 2012;97(8):E1515–23.PubMedCrossRefGoogle Scholar
  73. 73.
    Liu S, Gao S, Wang XY, Wang DB. Expression of miR-126 and Crk in endometriosis: miR-126 may affect the progression of endometriosis by regulating Crk expression. Arch Gynecol Obstet. 2012;285(4):1065–72.PubMedCrossRefGoogle Scholar
  74. 74.
    Abe W, Nasu K, Nakada C, Kawano Y, Moriyama M, Narahara H, et al. MiR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells. Hum Reprod. 2013;28(3):750–61.PubMedCrossRefGoogle Scholar
  75. 75.
    Shen L, Yang S, Huang W, Xu W, Wang Q, Song Y, et al. MicroRNA23a and MicroRNA23b deregulation derepresses SF-1 and upregulates estrogen signaling in ovarian endometriosis. J Clin Endocrinol Metab. 2013;98(4):1575–82.PubMedCrossRefGoogle Scholar
  76. 76.
    Laudanski P, Charkiewicz R, Kuzmicki M, Szamatowicz J, Charkiewicz A, Niklinski J. MicroRNAs expression profiling of eutopic proliferative endometrium in women with ovarian endometriosis. Reprod Biol Endocrinol. 2013;11:78.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Shi X-Y, Lin G, Jie C, Guo X-R, Shi Y-L. Downregulation of miR-183 inhibits apoptosis and enhances the invasive potential of endometrial stromal cells in endometriosis. Int J Mol Med. 2014;33(1):59–67.PubMedCrossRefGoogle Scholar
  78. 78.
    Braza-Boils A, Mari-Alexandre J, Gilabert J, Sanchez-Izquierdo D, Espana F, Estelles A, et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod. 2014;29(5):978–88.PubMedCrossRefGoogle Scholar
  79. 79.
    Zheng B, Xue X, Zhao Y, Chen J, Xu C-Y, Duan P. The differential expression of microRNA-143,145 in endometriosis. Iran J Reprod Med. 2014;12(8):555–60.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Zhao M, Tang Q, Wu W, Xia Y, Chen D, Wang X. miR-20a contributes to endometriosis by regulating NTN4 expression. Mol Biol Rep. 2014;41(9):5793–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Graham A, Falcone T, Nothnick WB. The expression of microRNA-451 in human endometriotic lesions is inversely related to that of macrophage migration inhibitory factor (MIF) and regulates MIF expression and modulation of epithelial cell survival. Hum Reprod. 2015;30(3):642–52.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Lv X, Chen P, Liu W. Down regulation of MiR-93 contributes to endometriosis through targeting MMP3 and VEGFA. Am J Cancer Res. 2015;5(5):1706–17.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Zhang D, Li Y, Tian J, Zhang H, Wang S. MiR-202 promotes endometriosis by regulating SOX6 expression. Int J Clin Exp Med. 2015;8(10):17757–64.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Dong M, Yang P, Hua F. MiR-191 modulates malignant transformation of endometriosis through regulating TIMP3. Med Sci Monit. 2015;21:915–20.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Long M, Wan X, La X, Gong X, Cai X, Long M, et al. MiR-29c is downregulated in the ectopic endometrium and exerts its effects on endometrial cell proliferation, apoptosis and invasion by targeting c-Jun. Int J Mol Med. 2015;35(4):1119–25.PubMedCrossRefGoogle Scholar
  86. 86.
    Yang RQ, Teng H, Xu XH, Liu SY, Wang YH, Guo FJ, et al. Microarray analysis of microRNA deregulation and angiogenesis-related proteins in endometriosis. Genet Mol Res. 2016;15(2):7826–33.Google Scholar
  87. 87.
    Nothnick WB, Falcone T, Joshi N, Fazleabas AT, Graham A. Serum miR-451a levels are significantly elevated in women with endometriosis and recapitulated in baboons (papio anubis) with experimentally-induced disease. Reprod Sci. 2017;24(8):1195–202.PubMedCrossRefGoogle Scholar
  88. 88.
    Liang Z, Chen Y, Zhao Y, Xu C, Zhang A, Zhang Q, et al. miR-200c suppresses endometriosis by targeting MALAT1 in vitro and in vivo. Stem Cell Res Ther. 2017;8(1):251.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zhao L, Gu C, Ye M, Zhang Z, Li L, Fan W, et al. Integration analysis of microRNA and mRNA paired expression profiling identifies deregulated microRNA-transcription factor-gene regulatory networks in ovarian endometriosis. Reprod Biol Endocrinol. 2018;16(1):4.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Liu Y, Chen J, Zhu X, Tang L, Luo X, Shi Y. Role of miR-449b-3p in endometriosis via effects on endometrial stromal cell proliferation and angiogenesis. Mol Med Rep. 2018;18(3):3359–65.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Rekker K, Tasa T, Saare M, Samuel K, Kadastik Ü, Karro H, et al. Differentially-expressed miRNAs in ectopic stromal cells contribute to endometriosis development: the plausible role of miR-139-5p and miR-375. Int J Mol Sci. 2018;19(12):3789.PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Matsuzaki S, Darcha C. Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis. Hum Reprod. 2012;27(3):712–21.PubMedCrossRefGoogle Scholar
  93. 93.
    Yang Y-M, Yang W-X. Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget. 2017;8(25):41679–89.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science. 2013;342(6159):1234850.PubMedCrossRefGoogle Scholar
  95. 95.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Gaetje R, Kotzian S, Herrmann G, Baumann R, Starzinski-Powitz A. Nonmalignant epithelial cells, potentially invasive in human endometriosis, lack the tumor suppressor molecule E-cadherin. Am J Pathol. 1997;150(2):461–7.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Zeitvogel A, Baumann R, Starzinski-Powitz A. Identification of an invasive, N-cadherin-expressing epithelial cell type in endometriosis using a new cell culture model. Am J Pathol. 2001;159(5):1839–52.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910–4.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Gregory-Bass RC, Olatinwo M, Xu W, Matthews R, Stiles JK, Thomas K, et al. Prohibitin silencing reverses stabilization of mitochondrial integrity and chemoresistance in ovarian cancer cells by increasing their sensitivity to apoptosis. Int J Cancer. 2008;122(9):1923–30.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kim NH, Kim HS, Li X-Y, Lee I, Choi H-S, Kang SE, et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol. 2011;195(3):417–33.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Siemens H, Jackstadt R, Hunten S, Kaller M, Menssen A, Gotz U, et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle. 2011;10(24):4256–71.PubMedCrossRefGoogle Scholar
  102. 102.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Sahin C, Mamillapalli R, Yi KW, Taylor HS. microRNA Let-7b: a novel treatment for endometriosis. J Cell Mol Med. 2018;22(11):5346–53.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyUniversity of TorontoTorontoCanada
  2. 2.Endometriosis CaRe Center, Nuffield Department of Women’s and Reproductive HealthUniversity of OxfordOxfordUK

Personalised recommendations