Endometrial Development and Its Fine Structure

  • Takeshi KuritaEmail author
  • Jumpei Terakawa


Reproduction is the biological process that produces new living individuals and essential for the continuity of species. In mammalian reproduction, the uterus plays a pivotal role as the organ that supports the development of offspring. The main subjects of this chapter are the development and structure of the uterus. To fully make sense of the overall structure of the uterus, the process through which urogenital systems arise must be understood. Thus, we start this chapter with embryology of the uterus. Furthermore, organ structure often dictates the function, and organ function dictates the structure. This bidirectional causality is particularly evident in the human uterus: The human uterus changes in morphology dramatically in response to endocrine cues. On the other hand, the anatomy of the uterus by design dictates its physiologic function. Thus, the aim of this chapter is to provide the foundation for the following chapters through the description of embryology, anatomy, and physiology of the uterus.


Müllerian duct Urogenital organ development Congenital uterine anomalies Menstrual cycle Uterine gland 



The authors acknowledge Ms. Vanida Ann Serna for editing this book chapter.


  1. 1.
    Kurita T. Developmental origin of vaginal epithelium. Differentiation. 2010;80(2–3):99–105.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Müller J. Bildungsgeschichte der Genitalien aus anatomischen Untersuchungen an Embryonen des Menschen und der Thiere; nebst einem Anhang über die chirurgische Behandlung der Hypospadia. Düsseldorf: Arnz; 1830.CrossRefGoogle Scholar
  3. 3.
    O’Rahilly R. The embryology and anatomy of the uterus. In: Wynn RM, editor. The uterus. International Academy of Pathology, Monograph. 14. Baltimore: The Williams & Wilkins Co.; 1973. p. 17–39.Google Scholar
  4. 4.
    Kobayashi A, Behringer RR. Developmental genetics of the female reproductive tract in mammals. Nat Rev Genet. 2003;4(12):969–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Robboy SJ, Kurita T, Baskin L, Cunha GR. New insights into human female reproductive tract development. Differentiation. 2017;97:9–22.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Grünwald P. The relation of the growing tip of the Müllerian duct to the Wolffian duct and its importance for the genesis of malformations. Anat Rec. 1941;81:1–19.CrossRefGoogle Scholar
  7. 7.
    Orvis GD, Behringer RR. Cellular mechanisms of Müllerian duct formation in the mouse. Dev Biol. 2007;306(2):493–504.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kurita T. Normal and abnormal epithelial differentiation in the female reproductive tract. Differentiation. 2011;82(3):117–26.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kurita T, Nakamura H. Embryology of the uterus. In: Aplin JD, Fazleabas AT, Glasser SR, Giudice LC, editors. Endometrium. 2nd ed. London, UK: Informa UK Ltd.; 2008. p. 1–18.Google Scholar
  10. 10.
    Koff AK. Development of the vagina in the human fetus. Contrib Embryol. 1933;24(140):59–91.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Hashimoto R. Development of the human Müllerian duct in the sexually undifferentiated stage. Anat Rec A Discov Mol Cell Evol Biol. 2003;272(2):514–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rey R, Josso N, Racine C. Sexual differentiation. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, et al., editors. Endotext. South Dartmouth (MA):, Inc.; 2000.Google Scholar
  13. 13.
    Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994;372(6506):525–30.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111–20.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    De Santa BP, Bonneaud N, Boizet B, Desclozeaux M, Moniot B, Sudbeck P, et al. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Mullerian hormone gene. Mol Cell Biol. 1998;18(11):6653–65.CrossRefGoogle Scholar
  16. 16.
    Nicol B, Yao HH. Building an ovary: insights into establishment of somatic cell lineages in the mouse. Sex Dev. 2014;8(5):243–51.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Pannetier M, Chassot AA, Chaboissier MC, Pailhoux E. Involvement of FOXL2 and RSPO1 in ovarian determination, development, and maintenance in mammals. Sex Dev. 2016;10(4):167–84.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Choussein S, Nasioudis D, Schizas D, Economopoulos KP. Mullerian dysgenesis: a critical review of the literature. Arch Gynecol Obstet. 2017;295(6):1369–81.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Patnaik SS, Brazile B, Dandolu V, Ryan PL, Liao J. Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome: a historical perspective. Gene. 2015;555(1):33–40.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Fontana L, Gentilin B, Fedele L, Gervasini C, Miozzo M. Genetics of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. Clin Genet. 2017;91(2):233–46.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Jacquinet A, Millar D, Lehman A. Etiologies of uterine malformations. Am J Med Genet A. 2016;170(8):2141–72.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    The American Fertility Society classifications of adnexal adhesions, distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancies, mullerian anomalies and intrauterine adhesions. Fertil Steril. 1988;49(6):944–55.Google Scholar
  23. 23.
    Mossman HW. Comparative anatomy. In: Wynn RM, editor. Biology of the uterus. New York: Plenum Press; 1977. p. 19–34.CrossRefGoogle Scholar
  24. 24.
    Maltais LJ, Blake JA, Eppig JT, Davisson MT. Rules and guidelines for mouse gene nomenclature: a condensed version. International Committee on Standardized Genetic Nomenclature for Mice. Genomics. 1997;45(2):471–6.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    White JA, McAlpine PJ, Antonarakis S, Cann H, Eppig JT, Frazer K, et al. Guidelines for human gene nomenclature (1997). HUGO Nomenclature Committee. Genomics. 1997;45(2):468–71.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Huang CC, Orvis GD, Kwan KM, Behringer RR. Lhx1 is required in Mullerian duct epithelium for uterine development. Dev Biol. 2014;389(2):124–36.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development. 2005;132(12):2809–23.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kobayashi A, Shawlot W, Kania A, Behringer RR. Requirement of Lim1 for female reproductive tract development. Development. 2004;131(3):539–49.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ledig S, Brucker S, Barresi G, Schomburg J, Rall K, Wieacker P. Frame shift mutation of LHX1 is associated with Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. Hum Reprod. 2012;27(9):2872–5.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Davis RJ, Harding M, Moayedi Y, Mardon G. Mouse Dach1 and Dach2 are redundantly required for Mullerian duct development. Genesis. 2008;46(4):205–13.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Patel SR, Dressler GR. The genetics and epigenetics of kidney development. Semin Nephrol. 2013;33(4):314–26.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M. Nephric lineage specification by Pax2 and Pax8. Genes Dev. 2002;16(22):2958–70.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Torres M, Gomez-Pardo E, Dressler GR, Gruss P. Pax-2 controls multiple steps of urogenital development. Development. 1995;121(12):4057–65.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Mansouri A, Chowdhury K, Gruss P. Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet. 1998;19(1):87–90.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Boualia SK, Gaitan Y, Tremblay M, Sharma R, Cardin J, Kania A, et al. A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis. Dev Biol. 2013;382(2):555–66.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Barua M, Stellacci E, Stella L, Weins A, Genovese G, Muto V, et al. Mutations in PAX2 associate with adult-onset FSGS. J Am Soc Nephrol. 2014;25(9):1942–53.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Schimmenti LA. Renal coloboma syndrome. Eur J Hum Genet: EJHG. 2011;19(12):1207–12.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet. 1995;9(4):358–64.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Meeus L, Gilbert B, Rydlewski C, Parma J, Roussie AL, Abramowicz M, et al. Characterization of a novel loss of function mutation of PAX8 in a familial case of congenital hypothyroidism with in-place, normal-sized thyroid. J Clin Endocrinol Metab. 2004;89(9):4285–91.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Madariaga L, Moriniere V, Jeanpierre C, Bouvier R, Loget P, Martinovic J, et al. Severe prenatal renal anomalies associated with mutations in HNF1B or PAX2 genes. Clin J Am Soc Nephrol. 2013;8(7):1179–87.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S. Defects of urogenital development in mice lacking Emx2. Development. 1997;124(9):1653–64.PubMedPubMedCentralGoogle Scholar
  42. 42.
    McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell. 1992;68(2):283–302.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Dollé P, Izpisua-Belmonte JC, Brown JM, Tickle C, Duboule D. HOX-4 genes and the morphogenesis of mammalian genitalia. Genes Dev. 1991;5(10):1767–75.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ma L, Benson GV, Lim H, Dey SK, Maas RL. Abdominal B (AbdB) Hoxa genes: regulation in adult uterus by estrogen and progesterone and repression in Müllerian duct by the synthetic estrogen diethylstilbestrol (DES). Dev Biol. 1998;197(2):141–54.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dolle P. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development. 1997;124(23):4781–91.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Raines AM, Adam M, Magella B, Meyer SE, Grimes HL, Dey SK, et al. Recombineering-based dissection of flanking and paralogous Hox gene functions in mouse reproductive tracts. Development. 2013;140(14):2942–52.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Benson GV, Lim H, Paria BC, Satokata I, Dey SK, Maas RL. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development. 1996;122(9):2687–96.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Gendron RL, Paradis H, Hsieh-Li HM, Lee DW, Potter SS, Markoff E. Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice. Biol Reprod. 1997;56(5):1097–105.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Branford WW, Benson GV, Ma L, Maas RL, Potter SS. Characterization of Hoxa-10/Hoxa-11 transheterozygotes reveals functional redundancy and regulatory interactions. Dev Biol. 2000;224(2):373–87.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Dolle P, Dierich A, LeMeur M, Schimmang T, Schuhbaur B, Chambon P, et al. Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell. 1993;75(3):431–41.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Roux M, Bouchard M, Kmita M. Multifaceted Hoxa13 function in urogenital development underlies the Hand-Foot-Genital Syndrome. Hum Mol Genet. 2019;28(10):1671–81.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Mortlock DP, Innis JW. Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet. 1997;15(2):179–80.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Innis JW. Hand-foot-genital syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. GeneReviews((R)). Seattle(WA): University of Washington, Seattle; 1993.Google Scholar
  54. 54.
    Goodman FR, Bacchelli C, Brady AF, Brueton LA, Fryns JP, Mortlock DP, et al. Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am J Hum Genet. 2000;67(1):197–202.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Debeer P, Bacchelli C, Scambler PJ, De Smet L, Fryns JP, Goodman FR. Severe digital abnormalities in a patient heterozygous for both a novel missense mutation in HOXD13 and a polyalanine tract expansion in HOXA13. J Med Genet. 2002;39(11):852–6.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ekici AB, Strissel PL, Oppelt PG, Renner SP, Brucker S, Beckmann MW, et al. HOXA10 and HOXA13 sequence variations in human female genital malformations including congenital absence of the uterus and vagina. Gene. 2013;518(2):267–72.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Zhu Y, Cheng Z, Wang J, Liu B, Cheng L, Chen B, et al. A novel mutation of HOXA11 in a patient with septate uterus. Orphanet J Rare Dis. 2017;12(1):178.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wilson JG, Warkany J. Malformations in the genito-urinary tract induced by maternal vitamin a deficiency in the rat. Am J Anat. 1948;83(3):357–407.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P, et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development. 1994;120(10):2749–71.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Kastner P, Mark M, Ghyselinck N, Krezel W, Dupe V, Grondona JM, et al. Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development. 1997;124(2):313–26.PubMedGoogle Scholar
  61. 61.
    Marshall H, Morrison A, Studer M, Popperl H, Krumlauf R. Retinoids and Hox genes. FASEB J. 1996;10(9):969–78.PubMedCrossRefGoogle Scholar
  62. 62.
    Langston AW, Gudas LJ. Retinoic acid and homeobox gene regulation. Curr Opin Genet Dev. 1994;4(4):550–5.PubMedCrossRefGoogle Scholar
  63. 63.
    DiMartino JF, Selleri L, Traver D, Firpo MT, Rhee J, Warnke R, et al. The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood. 2001;98(3):618–26.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Schnabel CA, Selleri L, Jacobs Y, Warnke R, Cleary ML. Expression of Pbx1b during mammalian organogenesis. Mech Dev. 2001;100(1):131–5.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Schnabel CA, Selleri L, Cleary ML. Pbx1 is essential for adrenal development and urogenital differentiation. Genesis. 2003;37(3):123–30.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Schnabel CA, Godin RE, Cleary ML. Pbx1 regulates nephrogenesis and ureteric branching in the developing kidney. Dev Biol. 2003;254(2):262–76.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192–205.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wang J, Sinha T, Wynshaw-Boris A. Wnt signaling in mammalian development: lessons from mouse genetics. Cold Spring Harb Perspect Biol. 2012;4:a007963.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2016;36:1461.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature. 1999;397(6718):405–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Prunskaite-Hyyrylainen R, Skovorodkin I, Xu Q, Miinalainen I, Shan J, Vainio SJ. Wnt4 coordinates directional cell migration and extension of the Mullerian duct essential for ontogenesis of the female reproductive tract. Hum Mol Genet. 2016;25(6):1059–73.PubMedCrossRefGoogle Scholar
  72. 72.
    Jeays-Ward K, Hoyle C, Brennan J, Dandonneau M, Alldus G, Capel B, et al. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development. 2003;130(16):3663–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Philibert P, Biason-Lauber A, Rouzier R, Pienkowski C, Paris F, Konrad D, et al. Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and mullerian duct abnormalities: a French collaborative study. J Clin Endocrinol Metab. 2008;93(3):895–900.PubMedCrossRefGoogle Scholar
  74. 74.
    Philibert P, Biason-Lauber A, Gueorguieva I, Stuckens C, Pienkowski C, Lebon-Labich B, et al. Molecular analysis of WNT4 gene in four adolescent girls with mullerian duct abnormality and hyperandrogenism (atypical Mayer-Rokitansky-Kuster-Hauser syndrome). Fertil Steril. 2011;95(8):2683–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Green J, Nusse R, van Amerongen R. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb Perspect Biol. 2014;6:a009175.CrossRefGoogle Scholar
  76. 76.
    Miller C, Pavlova A, Sassoon DA. Differential expression patterns of Wnt genes in the murine female reproductive tract during development and the estrous cycle. Mech Dev. 1998;76(1–2):91–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Mericskay M, Kitajewski J, Sassoon D. Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus. Development. 2004;131(9):2061–72.PubMedCrossRefGoogle Scholar
  78. 78.
    St-Jean G, Boyer A, Zamberlam G, Godin P, Paquet M, Boerboom D. Targeted ablation of Wnt4 and Wnt5a in Mullerian duct mesenchyme impedes endometrial gland development and causes partial Mullerian agenesis. Biol Reprod. 2019;100(1):49–60.PubMedCrossRefGoogle Scholar
  79. 79.
    Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, Robu ME, et al. WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn. 2010;239(1):327–37.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Takasato M, Little MH. The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development. 2015;142(11):1937–47.PubMedCrossRefGoogle Scholar
  81. 81.
    Dressler GR. Advances in early kidney specification, development and patterning. Development. 2009;136(23):3863–74.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role in the regulation of mesenchymal to transitions underlying organogenesis of the mammalian urogenital. Dev Cell. 2005;9(2):283–92.PubMedCrossRefGoogle Scholar
  83. 83.
    Waschk DE, Tewes AC, Romer T, Hucke J, Kapczuk K, Schippert C, et al. Mutations in WNT9B are associated with Mayer-Rokitansky-Kuster-Hauser syndrome. Clin Genet. 2016;89(5):590–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Lokmane L, Heliot C, Garcia-Villalba P, Fabre M, Cereghini S. vHNF1 functions in distinct regulatory circuits to control ureteric bud branching and early nephrogenesis. Development. 2010;137(2):347–57.PubMedCrossRefGoogle Scholar
  85. 85.
    Coffinier C, Barra J, Babinet C, Yaniv M. Expression of the vHNF1/HNF1beta homeoprotein gene during mouse organogenesis. Mech Dev. 1999;89(1–2):211–3.PubMedCrossRefGoogle Scholar
  86. 86.
    Schimke RN, King CR. Hereditary urogenital adysplasia. Clin Genet. 1980;18(6):417–20.PubMedCrossRefGoogle Scholar
  87. 87.
    Verhave JC, Bech AP, Wetzels JF, Nijenhuis T. Hepatocyte nuclear factor 1beta-associated kidney disease: more than renal cysts and diabetes. J Am Soc Nephrol. 2016;27(2):345–53.PubMedCrossRefGoogle Scholar
  88. 88.
    Lindner TH, Njolstad PR, Horikawa Y, Bostad L, Bell GI, Sovik O. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum Mol Genet. 1999;8(11):2001–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Iwasaki N, Okabe I, Momoi MY, Ohashi H, Ogata M, Iwamoto Y. Splice site mutation in the hepatocyte nuclear factor-1 beta gene, IVS2nt + 1G > A, associated with maturity-onset diabetes of the young, renal dysplasia and bicornuate uterus. Diabetologia. 2001;44(3):387–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Bellanne-Chantelot C, Chauveau D, Gautier JF, Dubois-Laforgue D, Clauin S, Beaufils S, et al. Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann Intern Med. 2004;140(7):510–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Grote D, Boualia SK, Souabni A, Merkel C, Chi X, Costantini F, et al. Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet. 2008;4(12):e1000316.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Belge H, Dahan K, Cambier JF, Benoit V, Morelle J, Bloch J, et al. Clinical and mutational spectrum of hypoparathyroidism, deafness and renal dysplasia syndrome. Nephrol Dial Transplant. 2017;32(5):830–7.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Hernandez AM, Villamar M, Rosello L, Moreno-Pelayo MA, Moreno F, Del Castillo I. Novel mutation in the gene encoding the GATA3 transcription factor in a Spanish familial case of hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome with female genital tract malformations. Am J Med Genet A. 2007;143A(7):757–62.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Iizuka-Kogo A, Ishidao T, Akiyama T, Senda T. Abnormal development of urogenital organs in Dlgh1-deficient mice. Development. 2007;134(9):1799–807.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Jamin SP, Arango NA, Mishina Y, Hanks MC, Behringer RR. Requirement of Bmpr1a for Müllerian duct regression during male sexual development. Nat Genet. 2002;32(3):408–10.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Orvis GD, Jamin SP, Kwan KM, Mishina Y, Kaartinen VM, Huang S, et al. Functional redundancy of tgf-Beta family type I receptors and receptor-smads in mediating anti-mullerian hormone-induced mullerian duct regression in the mouse. Biol Reprod. 2008;78(6):994–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Moustakas A, Heldin CH. The regulation of TGF beta signal transduction. Development. 2009;136(22):3699–714.PubMedCrossRefGoogle Scholar
  99. 99.
    Kobayashi A, Stewart CA, Wang Y, Fujioka K, Thomas NC, Jamin SP, et al. beta-Catenin is essential for Mullerian duct regression during male sexual differentiation. Development. 2011;138(10):1967–75.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Parr BA, McMahon AP. Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature. 1998;395(6703):707–10.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Deutscher E, Hung-Chang YH. Essential roles of mesenchyme-derived beta-catenin in mouse Müllerian duct morphogenesis. Dev Biol. 2007;307(2):227–36.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Tanwar PS, Zhang L, Tanaka Y, Taketo MM, Donahoe PK, Teixeira JM. Focal Mullerian duct retention in male mice with constitutively activated beta-catenin expression in the Mullerian duct mesenchyme. Proc Natl Acad Sci U S A. 2010;107(37):16142–7.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Park JH, Tanaka Y, Arango NA, Zhang L, Benedict LA, Roh MI, et al. Induction of WNT inhibitory factor 1 expression by Mullerian inhibiting substance/anti-Mullerian hormone in the Mullerian duct mesenchyme is linked to Mullerian duct regression. Dev Biol. 2014;386(1):227–36.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Mullen RD, Wang Y, Liu B, Moore EL, Behringer RR. Osterix functions downstream of anti-Mullerian hormone signaling to regulate Mullerian duct regression. Proc Natl Acad Sci U S A. 2018;115(33):8382–7.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Josso N, Belville C, di Clemente N, Picard JY. AMH and AMH receptor defects in persistent Mullerian duct syndrome. Hum Reprod Update. 2005;11(4):351–6.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Knebelmann B, Boussin L, Guerrier D, Legeai L, Kahn A, Josso N, et al. Anti-Mullerian hormone Bruxelles: a nonsense mutation associated with the persistent Mullerian duct syndrome. Proc Natl Acad Sci U S A. 1991;88(9):3767–71.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Imbeaud S, Faure E, Lamarre I, Mattei MG, di Clemente N, Tizard R, et al. Insensitivity to anti-mullerian hormone due to a mutation in the human anti-mullerian hormone receptor. Nat Genet. 1995;11(4):382–8.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Laronda MM, Unno K, Ishi K, Serna VA, Butler LM, Mills AA, et al. Diethylstilbestrol induces vaginal adenosis by disrupting SMAD/RUNX1-mediated cell fate decision in the Mullerian duct epithelium. Dev Biol. 2013;381(1):5–16.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kurita T, Mills AA, Cunha GR. Roles of p63 in the diethylstilbestrol-induced cervicovaginal adenosis. Development. 2004;131(7):1639–49.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Kurita T, Cunha GR, Robboy SJ, Mills AA, Medina RT. Differential expression of p63 isoforms in female reproductive organs. Mech Dev. 2005;122(9):1043–55.PubMedCrossRefGoogle Scholar
  111. 111.
    Cunha GR, Kurita T, Cao M, Shen J, Robboy S, Baskin L. Molecular mechanisms of development of the human fetal female reproductive tract. Differentiation. 2017;97:54–72.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Valdés-Dapena MA. The development of the uterus in late fetal life, infancy, and childhood. In: Norris HJ, Hertig AT, Abell MR, editors. The uterus. Baltimore: The Williams & Wilkins Company; 1973.Google Scholar
  113. 113.
    Haber HP, Mayer EI. Ultrasound evaluation of uterine and ovarian size from birth to puberty. Pediatr Radiol. 1994;24(1):11–3.PubMedCrossRefGoogle Scholar
  114. 114.
    Salardi S, Orsini LF, Cacciari E, Bovicelli L, Tassoni P, Reggiani A. Pelvic ultrasonography in premenarcheal girls: relation to puberty and sex hormone concentrations. Arch Dis Child. 1985;60(2):120–5.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hagen CP, Mouritsen A, Mieritz MG, Tinggaard J, Wohlfahrt-Veje C, Fallentin E, et al. Uterine volume and endometrial thickness in healthy girls evaluated by ultrasound (3-dimensional) and magnetic resonance imaging. Fertil Steril. 2015;104(2):452–9.e2.PubMedCrossRefGoogle Scholar
  116. 116.
    Holm K, Laursen EM, Brocks V, Muller J. Pubertal maturation of the internal genitalia: an ultrasound evaluation of 166 healthy girls. Ultrasound Obstet Gynecol. 1995;6(3):175–81.PubMedCrossRefGoogle Scholar
  117. 117.
    Ivarsson SA, Nilsson KO, Persson PH. Ultrasonography of the pelvic organs in prepubertal and postpubertal girls. Arch Dis Child. 1983;58(5):352–4.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Maybin JA, Critchley HO. Menstrual physiology: implications for endometrial pathology and beyond. Hum Reprod Update. 2015;21(6):748–61.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122(2):262–3.PubMedCrossRefGoogle Scholar
  120. 120.
    Duggan MA, Brashert P, Ostor A, Scurry J, Billson V, Kneafsey P, et al. The accuracy and interobserver reproducibility of endometrial dating. Pathology. 2001;33(3):292–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Li TC, Dockery P, Rogers AW, Cooke ID. How precise is histologic dating of endometrium using the standard dating criteria? Fertil Steril. 1989;51(5):759–63.PubMedCrossRefGoogle Scholar
  122. 122.
    Brosens JJ, Gellersen B. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014;35(6):851–905.PubMedCrossRefGoogle Scholar
  123. 123.
    Rock J, Bartlett MK. Biopsy studies of human endometrium: criteria of dating and information about amenorrhea, menorrhagia and time of ovulation. J Am Med Assoc. 1937;108(24):2022–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Maslar IA, Riddick DH. Prolactin production by human endometrium during the normal menstrual cycle. Am J Obstet Gynecol. 1979;135(6):751–4.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Rutanen EM, Koistinen R, Sjoberg J, Julkunen M, Wahlstrom T, Bohn H, et al. Synthesis of placental protein 12 by human endometrium. Endocrinology. 1986;118(3):1067–71.PubMedCrossRefGoogle Scholar
  126. 126.
    van der Horst CJ. The placentation of elephantulus. Transactions of the Royal Society of South Africa. 1949;32(5):435–629.CrossRefGoogle Scholar
  127. 127.
    Carter AM. Classics revisited: C. J. van der Horst on pregnancy and menstruation in elephant shrews. Placenta. 2018;67:24–30.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Bellofiore N, Ellery SJ, Mamrot J, Walker DW, Temple-Smith P, Dickinson H. First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus). Am J Obstet Gynecol. 2017;216(1):40 e1–e11.CrossRefGoogle Scholar
  129. 129.
    Rasweiler JJ, Badwaik NK. 5 - Anatomy and physiology of the female reproductive tract. In: Crichton EG, Krutzsch PH, editors. Reproductive biology of bats. London: Academic Press; 2000. p. 157–219.CrossRefGoogle Scholar
  130. 130.
    Sato T, Fukazawa Y, Kojima H, Enari M, Iguchi T, Ohta Y. Apoptotic cell death during the estrous cycle in the rat uterus and vagina. Anat Rec. 1997;248(1):76–83.PubMedCrossRefGoogle Scholar
  131. 131.
    Kurita T, Wang YZ, Donjacour AA, Zhao C, Lydon JP, O’Malley BW, et al. Paracrine regulation of apoptosis by steroid hormones in the male and female reproductive system. Cell Death Differ. 2001;8(2):192–200.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14(6):329–40.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Rezza A, Sennett R, Rendl M. Adult stem cell niches: cellular and molecular components. Curr Top Dev Biol. 2014;107:333–72.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Shay JW. Telomeres and aging. Curr Opin Cell Biol. 2018;52:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43(2 Pt 1):405–13.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973;41(1):181–90.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Gire V, Dulic V. Senescence from G2 arrest, revisited. Cell cycle (Georgetown, Tex.). 2015;14(3):297–304.CrossRefGoogle Scholar
  139. 139.
    Jabbour HN, Kelly RW, Fraser HM, Critchley HO. Endocrine regulation of menstruation. Endocr Rev. 2006;27(1):17–46.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Padykula HA. Regeneration in the primate uterus: the role of stem cells. Ann N Y Acad Sci. 1991;622:47–56.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Tempest N, Maclean A, Hapangama DK. Endometrial stem cell markers: current concepts and unresolved questions. Int J Mol Sci. 2018;19(10):3240.PubMedCentralCrossRefGoogle Scholar
  142. 142.
    Gargett CE, Chan RW, Schwab KE. Endometrial stem cells. Curr Opin Obstet Gynecol. 2007;19(4):377–83.PubMedCrossRefGoogle Scholar
  143. 143.
    Suda K, Nakaoka H, Yoshihara K, Ishiguro T, Tamura R, Mori Y, et al. Clonal Expansion and Diversification of Cancer-Associated Mutations in Endometriosis and Normal Endometrium. Cell Rep. 2018;24(7):1777–89.PubMedCrossRefGoogle Scholar
  144. 144.
    Valentijn AJ, Saretzki G, Tempest N, Critchley HO, Hapangama DK. Human endometrial epithelial telomerase is important for epithelial proliferation and glandular formation with potential implications in endometriosis. Hum Reprod. 2015;30(12):2816–28.PubMedGoogle Scholar
  145. 145.
    Tanaka M, Kyo S, Takakura M, Kanaya T, Sagawa T, Yamashita K, et al. Expression of telomerase activity in human endometrium is localized to epithelial glandular cells and regulated in a menstrual phase-dependent manner correlated with cell proliferation. Am J Pathol. 1998;153(6):1985–91.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Yokoyama Y, Takahashi Y, Shinohara A, Lian Z, Xiaoyun W, Niwa K, et al. Telomerase activity is found in the epithelial cells but not in the stromal cells in human endometrial cell culture. Mol Hum Reprod. 1998;4(10):985–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Vue Z, Gonzalez G, Stewart CA, Mehra S, Behringer RR. Volumetric imaging of the developing prepubertal mouse uterine epithelium using light sheet microscopy. Mol Reprod Dev. 2018;85(5):397–405.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Gray CA, Bartol FF, Tarleton BJ, Wiley AA, Johnson GA, Bazer FW, et al. Developmental biology of uterine glands. Biol Reprod. 2001;65(5):1311–23.PubMedCrossRefGoogle Scholar
  149. 149.
    Yuan J, Deng W, Cha J, Sun X, Borg JP, Dey SK. Tridimensional visualization reveals direct communication between the embryo and glands critical for implantation. Nat Commun. 2018;9(1):603.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Tanaka M, Kyo S, Kanaya T, Yatabe N, Nakamura M, Maida Y, et al. Evidence of the monoclonal composition of human endometrial epithelial glands and mosaic pattern of clonal distribution in luminal epithelium. Am J Pathol. 2003;163(1):295–301.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Bhatt H, Brunet LJ, Stewart CL. Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc Natl Acad Sci U S A. 1991;88(24):11408–12.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359(6390):76–9.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Chen JR, Cheng JG, Shatzer T, Sewell L, Hernandez L, Stewart CL. Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology. 2000;141(12):4365–72.PubMedCrossRefGoogle Scholar
  154. 154.
    Kobayashi R, Terakawa J, Kato Y, Azimi S, Inoue N, Ohmori Y, et al. The contribution of leukemia inhibitory factor (LIF) for embryo implantation differs among strains of mice. Immunobiology. 2014;219(7):512–21.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Jeong JW, Lee HS, Franco HL, Broaddus RR, Taketo MM, Tsai SY, et al. beta-catenin mediates glandular formation and dysregulation of beta-catenin induces hyperplasia formation in the murine uterus. Oncogene. 2009;28(1):31–40.PubMedCrossRefGoogle Scholar
  156. 156.
    Franco HL, Dai D, Lee KY, Rubel CA, Roop D, Boerboom D, et al. WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB J. 2011;25(4):1176–87.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Miller C, Sassoon DA. Wnt-7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract. Development. 1998;125(16):3201–11.PubMedGoogle Scholar
  158. 158.
    Dunlap KA, Filant J, Hayashi K, Rucker EB, 3rd, Song G, Deng JM, et al. Postnatal deletion of Wnt7a inhibits uterine gland morphogenesis and compromises adult fertility in mice. Biol Reprod. 2011;85(2):386–96.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Goad J, Ko YA, Kumar M, Syed SM, Tanwar PS. Differential Wnt signaling activity limits epithelial gland development to the anti-mesometrial side of the mouse uterus. Dev Biol. 2017;423(2):138–51.PubMedCrossRefGoogle Scholar
  160. 160.
    Shelton DN, Fornalik H, Neff T, Park SY, Bender D, DeGeest K, et al. The role of LEF1 in endometrial gland formation and carcinogenesis. PLoS One. 2012;7(7):e40312.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Terakawa J, Serna VA, Taketo MM, Daikoku T, Suarez A, Kurita T. Ovarian-insufficiency and CTNNB1 mutations drive malignant transformation of endometrial hyperplasia with altered PTEN/PI3K activities. Proc Natl Acad Sci U S A. 2019;116(10):4528–37.CrossRefGoogle Scholar
  162. 162.
    Oh SJ, Shin JH, Kim TH, Lee HS, Yoo JY, Ahn JY, et al. beta-Catenin activation contributes to the pathogenesis of adenomyosis through epithelial-mesenchymal transition. J Pathol. 2013;231(2):210–22.PubMedCrossRefGoogle Scholar
  163. 163.
    Farah O, Biechele S, Rossant J, Dufort D. Porcupine-dependent Wnt signaling controls stromal proliferation and endometrial gland maintenance through the action of distinct WNTs. Dev Biol. 2017;422(1):58–69.PubMedCrossRefGoogle Scholar
  164. 164.
    Glinka A, Dolde C, Kirsch N, Huang YL, Kazanskaya O, Ingelfinger D, et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/beta-catenin and Wnt/PCP signalling. EMBO Rep. 2011;12(10):1055–61.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Sone M, Oyama K, Mohri Y, Hayashi R, Clevers H, Nishimori K. LGR4 expressed in uterine epithelium is necessary for uterine gland development and contributes to decidualization in mice. FASEB J. 2013;27(12):4917–28.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Hirate Y, Suzuki H, Kawasumi M, Takase HM, Igarashi H, Naquet P, et al. Mouse Sox17 haploinsufficiency leads to female subfertility due to impaired implantation. Sci Rep. 2016;6:24171.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Guimaraes-Young A, Neff T, Dupuy AJ, Goodheart MJ. Conditional deletion of Sox17 reveals complex effects on uterine adenogenesis and function. Dev Biol. 2016;414(2):219–27.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Kurita T, Cooke PS, Cunha GR. Epithelial-stromal tissue interaction in paramesonephric (Mullerian) epithelial differentiation. Dev Biol. 2001;240(1):194–211.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Kurita T, Lee KJ, Cooke PS, Taylor JA, Lubahn DB, Cunha GR. Paracrine regulation of epithelial progesterone receptor by estradiol in the mouse female reproductive tract. Biol Reprod. 2000;62(4):821–30.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Engert S, Burtscher I, Liao WP, Dulev S, Schotta G, Lickert H. Wnt/beta-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse. Development. 2013;140(15):3128–38.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Sinner D, Rankin S, Lee M, Zorn AM. Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development. 2004;131(13):3069–80.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Robledo RF, Rajan L, Li X, Lufkin T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev. 2002;16(9):1089–101.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Bellessort B, Le Cardinal M, Bachelot A, Narboux-Neme N, Garagnani P, Pirazzini C, et al. Dlx5 and Dlx6 control uterine adenogenesis during post-natal maturation: possible consequences for endometriosis. Hum Mol Genet. 2016;25(1):97–108.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Rakowiecki S, Epstein DJ. Divergent roles for Wnt/beta-catenin signaling in epithelial maintenance and breakdown during semicircular canal formation. Development. 2013;140(8):1730–9.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Cancer Genome Atlas Research N, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.CrossRefGoogle Scholar
  176. 176.
    Chang HJ, Shin HS, Kim TH, Yoo JY, Teasley HE, Zhao JJ, et al. Pik3ca is required for mouse uterine gland development and pregnancy. PLoS One. 2018;13(1):e0191433.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Fehon RG, McClatchey AI, Bretscher A. Organizing the cell cortex: the role of ERM proteins. Nat Rev. 2010;11(4):276–87.CrossRefGoogle Scholar
  178. 178.
    McClatchey AI, Giovannini M. Membrane organization and tumorigenesis--the NF2 tumor suppressor, Merlin. Genes Develop. 2005;19(19):2265–77.PubMedCrossRefGoogle Scholar
  179. 179.
    Lopez EW, Vue Z, Broaddus RR, Behringer RR, Gladden AB. The ERM family member Merlin is required for endometrial gland morphogenesis. Dev Biol. 2018;442(2):301–14.PubMedCrossRefGoogle Scholar
  180. 180.
    Cooke PS, Spencer TE, Bartol FF, Hayashi K. Uterine glands: development, function and experimental model systems. Mol Hum Reprod. 2013;19(9):547–58.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Hou X, Tan Y, Li M, Dey SK, Das SK. Canonical Wnt signaling is critical to estrogen-mediated uterine growth. Mol Endocrinol. 2004;18(12):3035–49.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Hayashi K, Erikson DW, Tilford SA, Bany BM, Maclean JA 2nd, Rucker EB 3rd, et al. Wnt genes in the mouse uterus: potential regulation of implantation. Biol Reprod. 2009;80(5):989–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Cooke PS, Buchanan DL, Young P, Setiawan T, Brody J, Korach KS, et al. Stromal estrogen receptors mediate mitogenic effects of estradiol on uterine epithelium. Proc Natl Acad Sci U S A. 1997;94(12):6535–40.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Kurita T, Young P, Brody JR, Lydon JP, O’Malley BW, Cunha GR. Stromal progesterone receptors mediate the inhibitory effects of progesterone on estrogen-induced uterine epithelial cell deoxyribonucleic acid synthesis. Endocrinology. 1998;139(11):4708–13.PubMedCrossRefGoogle Scholar
  185. 185.
    Kurita T, Lee KJ, Cooke PS, Lydon JP, Cunha GR. Paracrine regulation of epithelial progesterone receptor and lactoferrin by progesterone in the mouse uterus. Biol Reprod. 2000;62(4):831–8.PubMedCrossRefGoogle Scholar
  186. 186.
    Buchanan DL, Setiawan T, Lubahn DB, Taylor JA, Kurita T, Cunha GR, et al. Tissue compartment-specific estrogen receptor-alpha participation in the mouse uterine epithelial secretory response. Endocrinology. 1999;140(1):484–91.PubMedCrossRefGoogle Scholar
  187. 187.
    Winuthayanon W, Hewitt SC, Orvis GD, Behringer RR, Korach KS. Uterine epithelial estrogen receptor alpha is dispensable for proliferation but essential for complete biological and biochemical responses. Proc Natl Acad Sci U S A. 2010;107(45):19272–7.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Mehta FF, Son J, Hewitt SC, Jang E, Lydon JP, Korach KS, et al. Distinct functions and regulation of epithelial progesterone receptor in the mouse cervix, vagina, and uterus. Oncotarget. 2016;7(14):17455–67.Google Scholar
  189. 189.
    Kaufman RH, Adam E, Binder GL, Gerthoffer E. Upper genital tract changes and pregnancy outcome in offspring exposed in utero to diethylstilbestrol. Am J Obstet Gynecol. 1980;137(3):299–308.PubMedCrossRefGoogle Scholar
  190. 190.
    Kaufman RH, Binder GL, Gray PM Jr, Adam E. Upper genital tract changes associated with exposure in utero to diethylstilbestrol. Am J Obstet Gynecol. 1977;128(1):51–9.PubMedCrossRefGoogle Scholar
  191. 191.
    Dodds EC, Golberg L, Lawson W, Robinson R. synthetic oestrogenic compounds related to stilbene and diphenylethane. Part I Proceedings of the Royal Society of London Series B, Biological Sciences. 1939;127(847):140–67.CrossRefGoogle Scholar
  192. 192.
    Dodds EC, Goldberg L, Lawson W, Robinson R. OEstrogenic activity of certain synthetic compounds. Nature. 1938;141(3562):247–8.CrossRefGoogle Scholar
  193. 193.
    Berger MJ, Goldstein DP. Impaired reproductive performance in DES-exposed women. Obstet Gynecol. 1980;55(1):25–7.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Fernandez H, Garbin O, Castaigne V, Gervaise A, Levaillant JM. Surgical approach to and reproductive outcome after surgical correction of a T-shaped uterus. Hum Reprod (Oxford, England). 2011;26(7):1730–4.CrossRefGoogle Scholar
  195. 195.
    Dieckmann WJ, Davis ME, Rynkiewicz LM, Pottinger RE. Does the administration of diethylstilbestrol during pregnancy have therapeutic value? Am J Obstet Gynecol. 1953;66(5):1062–81.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971;284(15):878–81.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Greenwald P, Barlow JJ, Nasca PC, Burnett WS. Vaginal cancer after maternal treatment with synthetic estrogens. N Engl J Med. 1971;285(7):390–2.PubMedCrossRefGoogle Scholar
  198. 198.
    Giusti RM, Iwamoto K, Hatch EE. Diethylstilbestrol revisited: a review of the long-term health effects. Ann Intern Med. 1995;122(10):778–88.PubMedCrossRefGoogle Scholar
  199. 199.
    Robboy SJ, Szyfelbein WM, Goellner JR, Kaufman RH, Taft PD, Richard RM, et al. Dysplasia and cytologic findings in 4,589 young women enrolled in diethylstilbestrol-adenosis (DESAD) project. Am J Obstet Gynecol. 1981;140(5):579–86.PubMedCrossRefGoogle Scholar
  200. 200.
    Robboy SJ, Young RH, Welch WR, Truslow GY, Prat J, Herbst AL, et al. Atypical vaginal adenosis and cervical ectropion. Association with clear cell adenocarcinoma in diethylstilbestrol-exposed offspring. Cancer. 1984;54(5):869–75.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Laronda MM, Unno K, Butler LM, Kurita T. The development of cervical and vaginal adenosis as a result of diethylstilbestrol exposure in utero. Differentiation. 2012;84(3):252–60.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Terakawa J, Rocchi A, Serna VA, Bottinger EP, Graff JM, Kurita T. FGFR2IIIb-MAPK activity is required for epithelial cell fate decision in the lower Mullerian duct. Mol Endocrinol. 2016;30(7):783–95.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Kurita T, Cunha GR. Roles of p63 in differentiation of Mullerian duct epithelial cells. Ann N Y Acad Sci. 2001;948:9–12.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Miller C, Degenhardt K, Sassoon DA. Fetal exposure to DES results in de-regulation of Wnt7a during uterine morphogenesis. Nat Genet. 1998;20(3):228–30.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Couse JF, Dixon D, Yates M, Moore AB, Ma L, Maas R, et al. Estrogen receptor-alpha knockout mice exhibit resistance to the developmental effects of neonatal diethylstilbestrol exposure on the female reproductive tract. Dev Biol. 2001;238(2):224–38.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Kurita T, Medina R, Schabel AB, Young P, Gama P, Parekh TV, et al. The activation function-1 domain of estrogen receptor alpha in uterine stromal cells is required for mouse but not human uterine epithelial response to estrogen. Differentiation. 2005;73(6):313–22.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Liu S, Gao X, Qin Y, Liu W, Huang T, Ma J, et al. Nonsense mutation of EMX2 is potential causative for uterus didelphysis: first molecular explanation for isolated incomplete mullerian fusion. Fertil Steril. 2015;103(3):769–74.e2.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Slavotinek A, Risolino M, Losa M, Cho MT, Monaghan KG, Schneidman-Duhovny D, et al. De novo, deleterious sequence variants that alter the transcriptional activity of the homeoprotein PBX1 are associated with intellectual disability and pleiotropic developmental defects. Hum Mol Genet. 2017;26(24):4849–60.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ. A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman. N Engl J Med. 2004;351(8):792–8.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Biason-Lauber A, De Filippo G, Konrad D, Scarano G, Nazzaro A, Schoenle EJ. WNT4 deficiency--a clinical phenotype distinct from the classic Mayer-Rokitansky-Kuster-Hauser syndrome: a case report. Hum Reprod. 2007;22(1):224–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Cancer Biology and GeneticsCollege of Medicine, The Comprehensive Cancer Center, The Ohio State UniversityColumbusUSA
  2. 2.Division of Transgenic Animal ScienceAdvanced Science Research Center, Kanazawa UniversityKanazawaJapan

Personalised recommendations