Séminaire de Probabilités L pp 33-82 | Cite as
Complementability and Maximality in Different Contexts: Ergodic Theory, Brownian and Poly-Adic Filtrations
Chapter
First Online:
Abstract
The notions of complementability and maximality were introduced in 1974 by Ornstein and Weiss in the context of the automorphisms of a probability space, in 2008 by Brossard and Leuridan in the context of the Brownian filtrations, and in 2017 by Leuridan in the context of the poly-adic filtrations indexed by the non-positive integers. We present here some striking analogies and also some differences existing between these three contexts.
Keywords
Automorphisms of Lebesgue spaces Factors Entropy Filtrations indexed by the non-positive integers Poly-adic filtrations Brownian filtrations Immersed filtrations Complementability Maximality Exchange propertyNotes
Acknowledgements
I thank A. Coquio, J. Brossard, M. Émery, S. Laurent, J.P. Thouvenot for their useful remarks and for stimulating conversations.
References
- 1.S. Attal, K. Burdzy, M. Émery, Y. Hu, Sur quelques filtrations et transformations browniennes, in Séminaire de Probabilités, IXXX. Lecture Notes in Mathematics, vol. 1613 (Springer, Berlin, 1995), pp. 56–69Google Scholar
- 2.K. Berg, Convolution of invariant measures, maximal entropy. Math. Syst. Theory 3(2), 146–150 (1969)MathSciNetCrossRefGoogle Scholar
- 3.J. Brossard, C. Leuridan, Filtrations browniennes et compléments indépendants, in Séminaire de Probabilités, XLI. Lecture Notes in Mathematics, vol. 1934 (2008), pp. 265–278Google Scholar
- 4.J. Brossard, M. Émery, C. Leuridan, Maximal Brownian motions. Ann. de l’IHP 45(3), 876–886 (2009)MathSciNetzbMATHGoogle Scholar
- 5.J. Brossard, M. Émery, C. Leuridan, Skew-Product Decomposition of Planar Brownian Motion and Complementability, in Séminaire de Probabilités, XLVI. Lecture Notes in Mathematics, vol. 2123 (Springer, Berlin, 2014), pp. 377–394Google Scholar
- 6.G. Ceillier, C. Leuridan, Filtrations at the threshold of standardness. Probab. Theory Relat. Fields 158(3–4), 785–808 (2014)MathSciNetCrossRefGoogle Scholar
- 7.I. Cornfeld, S. Fomin, Y. Sinai, Ergodic theory, in Grundlehren der mathematischen Wissenschaften, vol. 245 (Springer, Berlin, 1982)Google Scholar
- 8.T. de la Rue, Espaces de Lebesgue, in Séminaire de Probabilités XXVII. Lecture Notes in Mathematics, vol. 1557 (Springer, Berlin, 1993), pp. 15–21Google Scholar
- 9.M. Émery, On certain almost Brownian filtrations. Ann. de l’IHP Probabilités et Stat. 41, 285–305 (2005)MathSciNetzbMATHGoogle Scholar
- 10.M. Émery, W. Schachermayer, On Vershik’s standardness criterion and Tsirelson’s notion of cosiness, in Séminaire de Probabilités, XXXV. Lecture Notes in Mathematics, vol. 1755 (Springer, Berlin, 2001), pp. 265–305Google Scholar
- 11.S. Kalikow, R. McCutcheon, An outline of Ergodic theory, in Cambridge Studies in Advanced Mathematics (Cambridge University, Cambridge, 2010)CrossRefGoogle Scholar
- 12.S. Laurent, On standardness and I-cosiness, in Séminaire de Probabilités, XLIII. Lecture Notes in Mathematics, vol. 2006 (2011), pp. 127–186Google Scholar
- 13.S. Laurent, The filtration of erased-word processes, in Séminaire de Probabilités, XLVIII, Lecture Notes in Mathematics, vol. 2168 (2017), pp. 445–458CrossRefGoogle Scholar
- 14.C. Leuridan, Poly-adic Filtrations, standardness, complementability and maximality. Ann. Probab. 45(2), 1218–1246 (2017)MathSciNetCrossRefGoogle Scholar
- 15.D. Ornstein, Factors of Bernoulli shifts are Beroulli shifts. Adv. Math. 5, 349–364 (1971)CrossRefGoogle Scholar
- 16.D. Ornstein, Factors of Bernoulli shifts. Isr. J. Math. 21(2–3), 145–153 (1975)MathSciNetCrossRefGoogle Scholar
- 17.D. Ornstein, B. Weiss, Finitely determined implies very weak Bernoulli. Isr. J. Math. 17(1), 94–104 (1974)MathSciNetCrossRefGoogle Scholar
- 18.W. Parry, Entropy and Generators in Ergodic Theory (W.A. Benjamin Inc., Benjamin, 1969)zbMATHGoogle Scholar
- 19.K. Petersen, Ergodic Theory (Cambridge University, Cambridge, 1981)zbMATHGoogle Scholar
- 20.M. Smorodinsky, Processes with no standard extension. Isr. J. Math. 107, 327–331 (1998)MathSciNetCrossRefGoogle Scholar
- 21.J.P. Thouvenot, Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie. Isr. J. Math. 21, 208–214 (1975)CrossRefGoogle Scholar
- 22.A. Vershik, Theory of decreasing sequences of measurable partitions. Algebra i Analiz, 6(4), 1–68 (1994). English Translation: St. Petersburg Math. J. 6(4), 705–761 (1995)Google Scholar
- 23.H. von Weizsäcker, Exchanging the order of taking suprema and countable intersections of σ -algebras. Ann. Inst. H. Poincaré Sect. B 19(1), 91–100 (1983)MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019