Advertisement

Respiratory Mechanics and Gas Exchange in Thoracic Surgery: Changes in Classical Knowledge in Respiratory Physiology

  • Jakob Wittenstein
  • Paolo Pelosi
  • F. Javier Belda
  • Göran Hedenstierna
  • Marcelo Gama de AbreuEmail author
Chapter
  • 230 Downloads

Abstract

Respiratory mechanics describe the lung function through pressure and flow and the interplay between the two during the respiratory cycle. Derived indices are volume, compliance and resistance (Hess, Respir Care 59(11):1773–1794, 2014). Thoracic surgery in most cases requires the separation of the lungs in order to allow surgery of or near one lung and ventilation of the other lung, while the perfusion to the non-ventilated lung is continued. This has profound implications for the gas exchange and respiratory mechanics.

The necessary opening of the pleural interface during thoracic surgery alters intra-thoracic lung volume. The collapsing lung is released from the outward “spring” of the chest wall and collapses towards residual volume (Lohser and Slinger, Anesth Analg 121(2):302–318, 2015). Furthermore, end-expiratory lung volume of the ventilated lung is reduced and perfusion–ventilation matching of the ventilated lung is changed. This berries additional potential sources of alveolar damage and development of hypoxemia compared with non-thoracic surgery (Ball et al., Eur J Anaesthesiol 35:724–726, 2018).

Lung injury is the leading cause of death after thoracic surgery (Lohser and Slinger, Anesth Analg 121(2):302–318, 2015). The main iatrogenic risk factors are due to the ventilator settings: Volu- and atelectrauma resulting in the so called ventilator induced lung injury (VILI). Ventilation management during one-lung ventilation (OLV) involves the interplay between respiratory mechanics, patient lung function and patient body morphology. Profound knowledge of lung physiology in thoracic surgery is essential to choose the best ventilator settings to allow adequate gas exchange and protect the lungs from VILI.

Keywords

Respiratory mechanics Gas exchange One-lung ventilation Thoracic surgery Ventilator induced lung injury Postoperative pulmonary complications 

References

  1. 1.
    Hess DR. Respiratory mechanics in mechanically ventilated patients. Respir Care. 2014;59(11):1773–94.PubMedGoogle Scholar
  2. 2.
    Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg. 2015;121(2):302–18.PubMedGoogle Scholar
  3. 3.
    Ball L, Robba C, Gama de Abreu M, Pelosi P. Lung protection during one-lung ventilation: another piece in the puzzle. Eur J Anaesthesiol. 2018;35(10):724–6.PubMedGoogle Scholar
  4. 4.
    Schwenninger D, Runck H, Schumann S, Haberstroh J, Priebe HJ, Guttmann J. Endoscopic imaging to assess alveolar mechanics during quasi-static and dynamic ventilatory conditions in rats with noninjured and injured lungs. Crit Care Med. 2013;41(5):1286–95.PubMedGoogle Scholar
  5. 5.
    Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42(9):1360–73.PubMedGoogle Scholar
  6. 6.
    Cinnella G, Grasso S, Natale C, Sollitto F, Cacciapaglia M, Angiolillo M, et al. Physiological effects of a lung-recruiting strategy applied during one-lung ventilation. Acta Anaesthesiol Scand. 2008;52(6):766–75.PubMedGoogle Scholar
  7. 7.
    Valenza F, Ronzoni G, Perrone L, Valsecchi M, Sibilla S, Nosotti M, et al. Positive end-expiratory pressure applied to the dependent lung during one-lung ventilation improves oxygenation and respiratory mechanics in patients with high FEV1. Eur J Anaesthesiol. 2004;21(12):938–43.PubMedGoogle Scholar
  8. 8.
    Ferrando C, Mugarra A, Gutierrez A, Carbonell JA, García M, Soro M, et al. Setting individualized positive end-expiratory pressure level with a positive end-expiratory pressure decrement trial after a recruitment maneuver improves oxygenation and lung mechanics during one-lung ventilation. Anesth Analg. 2014;118(3):657–65.PubMedGoogle Scholar
  9. 9.
    Tusman G, Böhm SH, Melkun F, Staltari D, Quinzio C, Nador C, et al. Alveolar recruitment strategy increases arterial oxygenation during one-lung ventilation. Ann Thorac Surg. 2002;73(4):1204–9.PubMedGoogle Scholar
  10. 10.
    Tusman G, Böhm SH, Sipmann FS, Maisch S. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98(6):1604–9.PubMedGoogle Scholar
  11. 11.
    Mascotto G, Bizzarri M, Messina M, Cerchierini E, Torri G, Carozzo A, et al. Prospective, randomized, controlled evaluation of the preventive effects of positive end-expiratory pressure on patient oxygenation during one-lung ventilation. Eur J Anaesthesiol. 2003;20(9):704–10.PubMedGoogle Scholar
  12. 12.
    Slinger PD, Kruger M, McRae K, Winton T. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology. 2001;95(5):1096–102.PubMedGoogle Scholar
  13. 13.
    Choi YS, Bae MK, Kim SH, Park J-E, Kim SY, Oh YJ. Effects of alveolar recruitment and positive end-expiratory pressure on oxygenation during one-lung ventilation in the supine position. Yonsei Med J. 2015;56(5):1421–7.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Madke GR, Forgiarini LA Jr, Grun G, Fontena E, Pereira RB, de Moraes MM, et al. Effect of positive end-expiratory pressure after porcine unilateral left lung transplant. Exp Clin Transplant. 2013;11(1):50–5.PubMedGoogle Scholar
  15. 15.
    Ferrando C, Suarez-Sipmann F, Tusman G, León I, Romero E, Gracia E, et al. Open lung approach versus standard protective strategies: effects on driving pressure and ventilatory efficiency during anesthesia - a pilot, randomized controlled trial. PLoS One. 2017;12(5):e0177399.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ferrando C, Soro M, Unzueta C, Suarez-Sipmann F, Canet J, Librero J, et al. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): a randomised controlled trial. Lancet Respir Med. 2018;6(3):193–203.PubMedGoogle Scholar
  17. 17.
    Spadaro S, Grasso S, Karbing DS, Fogagnolo A, Contoli M, Bollini G, et al. Physiologic evaluation of ventilation perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation. Anesthesiology. 2018;128(3):531–8.PubMedGoogle Scholar
  18. 18.
    Purohit A, Bhargava S, Mangal V, Parashar VK. Lung isolation, one-lung ventilation and hypoxaemia during lung isolation. Indian J Anaesth. 2015;59(9):606–17.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Szegedi LL, Barvais L, Sokolow Y, Yernault JC, d’Hollander AA. Intrinsic positive end-expiratory pressure during one-lung ventilation of patients with pulmonary hyperinflation. Influence of low respiratory rate with unchanged minute volume. Br J Anaesth. 2002;88(1):56–60.PubMedGoogle Scholar
  20. 20.
    Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–55.PubMedGoogle Scholar
  21. 21.
    Hemmes SNT, de Abreu MG, Pelosi P, Schultz MJ. ESA Clinical Trials Network 2012: LAS VEGAS--Local assessment of ventilatory management during general anaesthesia for surgery and its effects on postoperative pulmonary complications: a prospective, observational, international, multicentre cohort study. Eur J Anaesthesiol. 2013;30(5):205–7.PubMedGoogle Scholar
  22. 22.
    Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4(4):272–80.PubMedGoogle Scholar
  23. 23.
    Park M, Ahn HJ, Kim JA, Yang M, Heo BY, Choi JW, et al. Driving pressure during thoracic surgery: a randomized clinical trial. Anesthesiology. 2019;130(3):385–93.PubMedGoogle Scholar
  24. 24.
    Rauseo M, Mirabella L, Grasso S, Cotoia A, Spadaro S, D’Antini D, et al. Peep titration based on the open lung approach during one lung ventilation in thoracic surgery: a physiological study. BMC Anesthesiol. 2018;18(1):156.  https://doi.org/10.1186/s12871-018-0624-3.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36.PubMedGoogle Scholar
  26. 26.
    Marret E, Cinotti R, Berard L, Piriou V, Jobard J, Barrucand B, et al. Protective ventilation during anaesthesia reduces major postoperative complications after lung cancer surgery: a double-blind randomised controlled trial. Eur J Anaesthesiol. 2018;35(10):727–35.PubMedGoogle Scholar
  27. 27.
    Sundar S, Novack V, Jervis K, Bender SP, Lerner A, Panzica P, et al. Influence of low tidal volume ventilation on time to extubation in cardiac surgical patients. Anesthesiology. 2011;114(5):1102–10.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Slinger PD. Optimizing one-lung ventilation: moving beyond tidal volume. J Cardiothorac Vasc Anesth. 2018;32(6):2673–5.PubMedGoogle Scholar
  29. 29.
    ARDS-Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342(18):1301–8.Google Scholar
  30. 30.
    Cressoni M, Gallazzi E, Chiurazzi C, Marino A, Brioni M, Menga F, et al. Limits of normality of quantitative thoracic CT analysis. Crit Care. 2013;17(3):R93.  https://doi.org/10.1186/cc12738.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Martin DC, Richards GN. Predicted body weight relationships for protective ventilation - unisex proposals from pre-term through to adult. BMC Pulm Med. 2017;17(1):85.  https://doi.org/10.1186/s12890-017-0427-1.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vidal Melo MF, Musch G, Kaczka DW. Pulmonary pathophysiology and lung mechanics in anesthesiology: a case-based overview. Anesthesiol Clin. 2012;30(4):759–84.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Washko GR, O’Donnell CR, Loring SH. Volume-related and volume-independent effects of posture on esophageal and transpulmonary pressures in healthy subjects. J Appl Physiol (1985). 2006;100(3):753–8.Google Scholar
  34. 34.
    Klingstedt C, Baehrendtz S, Bindslev L, Hedenstierna G. Lung and chest wall mechanics during differential ventilation with selective PEEP. Acta Anaesthesiol Scand. 1985;29(7):716–21.PubMedGoogle Scholar
  35. 35.
    Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med. 2005;31(6):776–84.PubMedGoogle Scholar
  36. 36.
    Larsson A, Malmkvist G, Werner O. Variations in lung volume and compliance during pulmonary surgery. Br J Anaesth. 1987;59(5):585–91.PubMedGoogle Scholar
  37. 37.
    Carvalho AR, Ichinose F, Schettino IA, Hess D, Rojas J, Giannella-Neto A, et al. Tidal lung recruitment and exhaled nitric oxide during coronary artery bypass grafting in patients with and without chronic obstructive pulmonary disease. Lung. 2011;189(6):499–509.PubMedGoogle Scholar
  38. 38.
    Lee SM, Kim WH, Ahn HJ, Kim JA, Yang MK, Lee CH, et al. The effects of prolonged inspiratory time during one-lung ventilation: a randomised controlled trial. Anaesthesia. 2013;68(9):908–16.PubMedGoogle Scholar
  39. 39.
    Gattinoni L, Carlesso E, Langer T. Towards ultraprotective mechanical ventilation. Curr Opin Anaesthesiol. 2012;25(2):141–7.PubMedGoogle Scholar
  40. 40.
    Plataki M, Hubmayr RD. The physical basis of ventilator-induced lung injury. Expert Rev Respir Med. 2010;4(3):373–85.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Lan CC, Chang CY, Peng CK, Wu CP, Huang KL, Lee SC, et al. Effect of body positions on hemodynamics and gas exchange in anesthetized pigs shortly after pneumonectomy. Shock. 2010;34(5):482–7.PubMedGoogle Scholar
  42. 42.
    Reinius H, Borges JB, Engström J, Ahlgren O, Lennmyr F, Larsson A, et al. Optimal PEEP during one-lung ventilation with capnothorax: an experimental study. Acta Anaesthesiol Scand. 2019;63(2):222–31.PubMedGoogle Scholar
  43. 43.
    Ribas J, Jimenez MJ, Barbera JA, Roca J, Gomar C, Canalis E, et al. Gas exchange and pulmonary hemodynamics during lung resection in patients at increased risk: relationship with preoperative exercise testing. Chest. 2001;120(3):852–9.PubMedGoogle Scholar
  44. 44.
    Brewer LA. The first pneumonectomy. Historical notes. J Thorac Cardiovasc Surg. 1984;88(5 Pt 2):810–26.PubMedGoogle Scholar
  45. 45.
    Graham EA, Singer JJ. Landmark article Oct 28, 1933. Successful removal of an entire lung for carcinoma of the bronchus. By Evarts A. Graham and J. J. Singer. JAMA. 1984;251(2):257–60.PubMedGoogle Scholar
  46. 46.
    Bender SP, Anderson EP, Hieronimus RI, Bensimhon A. One-lung ventilation and acute lung injury. Int Anesthesiol Clin. 2018;56(1):88–106.PubMedGoogle Scholar
  47. 47.
    West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–24.PubMedGoogle Scholar
  48. 48.
    Downs JB, Robinson LA, Steighner ML, Thrush D, Reich RR, Rasanen JO. Open lung ventilation optimizes pulmonary function during lung surgery. J Surg Res. 2014;192(2):242–9.PubMedGoogle Scholar
  49. 49.
    Campos JH, Feider A. Hypoxia during one-lung ventilation—a review and update. J Cardiothorac Vasc Anesth. 2018;32(5):2330–8.PubMedGoogle Scholar
  50. 50.
    Torda TA, McCulloch CH, O’Brien HD, Wright JS, Horton DA. Pulmonary venous admixture during one-lung anaesthesia. The effect of inhaled oxygen tension and respiration rate. Anaesthesia. 1974;29(3):272–9.PubMedGoogle Scholar
  51. 51.
    Hedenstierna G, Tokics L, Strandberg A, Lundquist H, Brismar B. Correlation of gas exchange impairment to development of atelectasis during anaesthesia and muscle paralysis. Acta Anaesthesiol Scand. 1986;30(2):183–91.PubMedGoogle Scholar
  52. 52.
    Lumb AB, Slinger P. Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology. 2015;122(4):932–46.PubMedGoogle Scholar
  53. 53.
    Glasser SA, Domino KB, Lindgren L, Parcella P, Marshall C, Marshall BE. Pulmonary blood pressure and flow during atelectasis in the dog. Anesthesiology. 1983;58(3):225–31.PubMedGoogle Scholar
  54. 54.
    Benumof JL. One-lung ventilation and hypoxic pulmonary vasoconstriction: implications for anesthetic management. Anesth Analg. 1985;64(8):821–33.PubMedGoogle Scholar
  55. 55.
    Tacconi F, Pompeo E. Non-intubated video-assisted thoracic surgery: where does evidence stand? J Thorac Dis. 2016;8(Suppl 4):S364–75.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Hung M-H, Hsu H-H, Cheng Y-J, Chen J-S. Nonintubated thoracoscopic surgery: state of the art and future directions. J Thorac Dis. 2014;6(1):2–9.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Guo Z, Yin W, Pan H, Zhang X, Xu X, Shao W, et al. Video-assisted thoracoscopic surgery segmentectomy by non-intubated or intubated anesthesia: a comparative analysis of short-term outcome. J Thorac Dis. 2016;8(3):359–68.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Irons JF, Martinez G. Anaesthetic considerations for non-intubated thoracic surgery. J Vis Surg. 2016;2:61.  https://doi.org/10.21037/jovs.2016.02.22. eCollection 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Pompeo E, Rogliani P, Tacconi F, Dauri M, Saltini C, Novelli G, et al. Randomized comparison of awake nonresectional versus nonawake resectional lung volume reduction surgery. J Thorac Cardiovasc Surg. 2012;143(1):47–54.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jakob Wittenstein
    • 1
  • Paolo Pelosi
    • 2
  • F. Javier Belda
    • 3
    • 4
  • Göran Hedenstierna
    • 5
    • 6
  • Marcelo Gama de Abreu
    • 1
    Email author
  1. 1.Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care MedicineUniversity Hospital Carl Gustav Carus at the Technische Universität DresdenDresdenGermany
  2. 2.Department of Surgical Sciences and Integrated Diagnostics (DISC), Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and NeurosciencesUniversity of GenoaGenoaItaly
  3. 3.Department of SurgeryUniversity of ValenciaValenciaSpain
  4. 4.Department of Anesthesia and Critical CareHospital Clinico UniversitarioValenciaSpain
  5. 5.Clinical PhysiologyThe University of UppsalaUppsalaSweden
  6. 6.Department of Physiology and Nuclear MedicineThe University of UppsalaUppsalaSweden

Personalised recommendations