Advertisement

Algebraic Structures

  • Neculai S. Teleman
Chapter

Abstract

In this chapter we introduce a new K-theory, called T-theory, and we reformulate the index theory.

References

  1. 31.
    Whitehead G. W.: Generalised homology theories. Trans. Amer. Math. Soc., 102, pp. 227–283, 1962.MathSciNetCrossRefGoogle Scholar
  2. 37.
    Bass H.: K-theory and stable algebra. Publ. Math. I.H.E.S. 22 (1964), pp. 5–60.Google Scholar
  3. 43.
    Swan R., Vector bundles and projective modules. Trans. Amer. Math. Soc. 105, 264–277, 1962MathSciNetCrossRefGoogle Scholar
  4. 66.
    Milnor J.: Characteristic Classes, Annals of Mathematics Studies Nr. 76, Princeton, 1974Google Scholar
  5. 89.
    Karoubi M., Homologie cyclique et K-Th\(\acute {e}\)orie. Ast\(\acute {e}\)risque No. 149 (1987). Soc. Math. de France.Google Scholar
  6. 96.
    Connes A., Moscovici H.: Cyclic Cohomology, the Novikov Conjecture and Hyperbolic Groups, Topology Vol. 29, pp.345–388, 1990.MathSciNetCrossRefGoogle Scholar
  7. 100.
    Rosenberg J.: Algebraic K-Theory and its Applications. Graduate Texts Nr. 147, Springer, Berlin, 1994.Google Scholar
  8. 108.
    Blackadar B.: K-Theory for Operator Algebras, Second Ed, Cambridge University Press, 1998zbMATHGoogle Scholar
  9. 110.
    Rordam M., Lansen F., Lautsen N.: An Introduction to K-Theory for C -Algebras. London Math. Soc. Student Texts Nr. 49, Cambridge, 2000Google Scholar
  10. 115.
    Cuntz J., Cyclic Theory, Bivariant K-Theory and the Bivariant Chern-Connes Character, Operator Algebras and Non-Commutative Geometry II, Encyclopedia of Mathematical Sciences, Vol. 121, 1–71, Springer Verlag, 2004.Google Scholar
  11. 125.
    Teleman N.: Local 3 Index Theorem. arXiv: 1109.6095v1, math.KT, 28 Sep. 2011.Google Scholar
  12. 126.
    Weibel C. A.: Algebraic K-Theory, 2012.Google Scholar
  13. 128.
    Teleman N.: The local index theorem. arXiv 1305.5392v2 [math.KT] 24 May 2013Google Scholar
  14. 129.
    Teleman N.: Local Algebraic K-Theory, 26 lug 2013 - arXiv.org > math > arXiv:1307.7014, 2013Google Scholar
  15. 131.
    Teleman N.: \(K_ {i}^{loc}(\ mathbb {C}) \), i = 0,  1 10 set 2013 - arXiv:1309.2421v1 [math.KT] 10 Sep 2013.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Neculai S. Teleman
    • 1
  1. 1.Dipartimento di Scienze MatematicheUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations