Index Theorems in Differential Geometry

  • Neculai S. Teleman


The Riemann–Roch theorem counts the zeroes and poles of a meromorphic function over a Riemann surface. The theorem was extended over complex analytic manifolds by Hirzebruch. Atiyah–Singer formula, valid on differentiable manifolds, explains that the formula holds because it is related to elliptic operators. The index formulas were extended to topological manifolds by N. Teleman. The Teleman formula produces the topological index as a cohomology class. It is not represented by a cohomology form because the Chern–Weil construction involves products of the curvature which could not be performed within classical differential geometry. This problem is re-considered within non-commutative geometry in the next chapter.


  1. 7.
    Thom R.: Vari\(\acute {e}t\acute {e}\)s diff\(\acute {e}\)rentiables cobordantes, C. R. Acad. Sci. Paris, 236, (1953), pp. 1733–1735Google Scholar
  2. 14.
    Hirzebruch F.: Neue topologische Methoden in der algebraischen Geometrie. Berlin, Springer, 1956.CrossRefGoogle Scholar
  3. 16.
    Grothendieck A.: Sur quelques points d’algebre homologiques. Tohoku math. J. p. 119–221, 1957MathSciNetCrossRefGoogle Scholar
  4. 19.
    S.S. Chern, F. Hirzebruch, J.P. Serre; On the index of a fibered manifold. Proc. Math. Soc. 8, pp 587–596, 1957MathSciNetCrossRefGoogle Scholar
  5. 20.
    Whitney H.: Geometric Integration Theory. Princeton University Press, 1957CrossRefGoogle Scholar
  6. 21.
    Borel A., Serre J.-P.: Le th\(\acute {e}\)or\(\grave {e}\)me de Riemann - Roch. Bulletin de la S. M. F., 97–136, 1958Google Scholar
  7. 24.
    Thom R.: Les classes haractetistiques des varietes triangul\(\grave {e}\)es, Symposium Internacional de Topologia algebrica, 54–67, 1958.Google Scholar
  8. 27.
    Wall, C. T. C. Determination of the cobordism ring. Annals of Mathematics. Annals of Mathematics, Vol. 72, (2): 292–311, 1960MathSciNetCrossRefGoogle Scholar
  9. 32.
    Hirzebruch F.: Neue topologische Methoden in der algebraischen Geometrie. Springer, 1962.CrossRefGoogle Scholar
  10. 42.
    Palais R.: Seminar on the Atiyah - Singer Index Theorem. Annals of Mathematics Studies 57, Princeton University Press, 1965Google Scholar
  11. 53.
    Atiyah M., Singer I. M.: The Index of elliptic operators: I, Ann. of Math. 87, 484–530, 1968.MathSciNetCrossRefGoogle Scholar
  12. 54.
    Atiyah M., Singer I. M.: The Index of elliptic operators: III, Ann. of Math. 87, 546–604, 1968.MathSciNetCrossRefGoogle Scholar
  13. 56.
    Kirby R., Siebenmann L. On the triangulation of manifolds and the Hauptvermutung. Bull. Amer. Math. Soc. 75, pp. 742–749, 1969MathSciNetCrossRefGoogle Scholar
  14. 59.
    Luukkainen J, Tukia P.: Quasisymmetric and Lipschitz approximation of embeddings, Annales Academiae Scientiarum Fennicae. Mathematica, Vol. 6, pg. 343–367, 1971MathSciNetCrossRefGoogle Scholar
  15. 64.
    Milnor J.: Morse Theory, Princeton, Anals of Mathematics Studies, Nr. 51, 1973Google Scholar
  16. 66.
    Milnor J.: Characteristic Classes, Annals of Mathematics Studies Nr. 76, Princeton, 1974Google Scholar
  17. 71.
    Hartshorne R.: Algebraic Geometry, Graduate Texts in Math., Vol. 52, Springer Verlag, 1977.Google Scholar
  18. 75.
    Sullivan D. : Hyperbolic geometry and homeomorphisms, in Geometric Topology, Proceedings Georgia Topology Conference, Athens, Georgia, 1977, pp. 543–555, Ed. J. C. Cantrell, Academic Press 1979.CrossRefGoogle Scholar
  19. 77.
    Teleman N. : Combinatorial Hodge theory and Signature theorem, Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc. 36, 287–292, 1980Google Scholar
  20. 78.
    Teleman N.: Combinatorial Hodge Theory Inventiones Mathematicae. 61, 227–249, 1980.CrossRefGoogle Scholar
  21. 83.
    Teleman N.: The Index of Signature Operators on Lipschitz Manifolds. Publ. Math. Paris, IHES, Vol. 58, pp. 251–290, 1983.zbMATHGoogle Scholar
  22. 84.
    Teleman N.: The Index Theorem on Topological Manifolds. Acta Mathematica 153, 117–152, 1984MathSciNetCrossRefGoogle Scholar
  23. 92.
    Donaldson S. K., Sullivan D.: Quasi-conformal 4-Manifolds, Acta Mathematica., Vol. 163 (1989), pp. 181–252.MathSciNetCrossRefGoogle Scholar
  24. 100.
    Rosenberg J.: Algebraic K-Theory and its Applications. Graduate Texts Nr. 147, Springer, Berlin, 1994.Google Scholar
  25. 101.
    Connes A., Sullivan D., Teleman N.: Quasiconformal Mappings, Operators on Hilbert Space and Local Formulae for Characteristic Classes, Topology Vol. 33, Nr. 4, pp. 663–681, 1994.Google Scholar
  26. 102.
    Luukkainen J., Movahedi -Lankarani H.: Minimal bi-Lipschitz embedding dimension of ultrametric spaces. Fundamenta Mathematicae 144, 1994Google Scholar
  27. 132.
    Ryan P.: The Grothendieck- Riemann-Roch Theorem. Harvard, 2015Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Neculai S. Teleman
    • 1
  1. 1.Dipartimento di Scienze MatematicheUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations