Advertisement

Non-commutative Topology

  • Neculai S. Teleman
Chapter

Abstract

We intend to produce a theory which generalises topological spaces; we call it non-commutative topology. In non-commutative differential geometry the basic homology theory is the periodic cyclic homology, based on the bi-complex (b, B). In non-commutative topology this structure will be replaced by the bi-complex \((\tilde {b}, d)\); the boundary \(\tilde {b}\) is called topological Hochschild boundary. These ideas combine Connes’ work (Noncommutative geometry, Academic Press, 1994) with ideas of the articles by Teleman and Teleman (St Cerc Math Tom 18(5):753–762, Bucarest, 1966; Rev Roumaine Math Pures Applic 12:725–731, 1967; Central European journal of mathematics. C*-algebras and elliptic theory II. Trends in mathematics, 251–265, Birkhauser, 2008; Local3 index theorem. arXiv: 1109.6095v1, math.KT, 28 Sep. 2011; textitLocal Hochschild homology of Hilbert-Schmidt operators on simplicial spaces. arXiv hal-00707040, Version 1, 11 June 2012; Local algebraic K-theory, 26 Aug 2013 - arXiv.org > math > arXiv:1307.7014, 2013; The local index theorem, HAL-00825083, arXiv 1305.5329, 22 May 2013; \(K_ {i}^{loc}(\ mathbb {C}) \), i = 0, 1 10 set 2013 - arXiv:1309.2421v1 [math.KT] 10 Sep 2013).

References

  1. 56.
    Kirby R., Siebenmann L. On the triangulation of manifolds and the Hauptvermutung. Bull. Amer. Math. Soc. 75, pp. 742–749, 1969MathSciNetCrossRefGoogle Scholar
  2. 82.
    Connes A.: Non-Commutative differential geometry. Publications Math\(\acute {e}\)matiques I.H.E.S. Vol. 62, pp.256–35, 1985.CrossRefGoogle Scholar
  3. 93.
    Getzler E. Szenes A.: On the Chern character of a theta-summable Fredholn module. 1989MathSciNetCrossRefGoogle Scholar
  4. 95.
    Connes A., Gromov M., Moscovici H.: Conjectures de Novikov et fibr\(\acute {e}\)s presque plats, C. R. Acad. Sci. Paris S\(\acute {e}\)r. A-B 310, 273–277, 1990Google Scholar
  5. 96.
    Connes A., Moscovici H.: Cyclic Cohomology, the Novikov Conjecture and Hyperbolic Groups, Topology Vol. 29, pp.345–388, 1990.MathSciNetCrossRefGoogle Scholar
  6. 97.
    Loday J.-L.: Cyclic Homology, Grundlehren in mathematischen Wissenschaften 301, Springer Verlag, Berlin Heidelberg, 1992.Google Scholar
  7. 99.
    Connes A.: Noncommutative Geometry, Academic Press, 1994.zbMATHGoogle Scholar
  8. 106.
    Ranicki A. (ed.) The Hauptvermutung Book ISBN 0-7923-4174-0, 1996.Google Scholar
  9. 107.
    N. Teleman, Microlocalisation de l’Homologie de Hochschild, C. R. Acad. Paris, t. 326, Serie I, p. 1261–1264, 1998.Google Scholar
  10. 111.
    Gracia-Bondia J. M., Figueroa H., Varilli J.: Elements of Noncommutative Geometry. Birkhauser Advanced Texts, 2000Google Scholar
  11. 121.
    Teleman N.: Direct connections and Chern character, Singularity Theory, Proceedings of the Marseille Singularity School and Conference CIRM, Marseilles, 24 January - 25 February 2005, Eds. D. Cheniot, N. Duterte, C. Murolo, D. Trotman, A. Pichon. World Scientific Publishing Company, 2007.Google Scholar
  12. 123.
    Teleman N.: Modified Hochschild and Periodic Cyclic Homology. Central European Journal of Mathematics. “C*-Algebras and Elliptic Theory II”, Trends in Mathematics, 251–265, Birkhauser, 2008Google Scholar
  13. 125.
    Teleman N.: Local 3 Index Theorem. arXiv: 1109.6095v1, math.KT, 28 Sep. 2011.Google Scholar
  14. 127.
    Teleman N.: Local Hochschild Homology of Hilbert-Schmidt Operators on Simplicial Spaces. arXiv hal-00707040, Version 1, 11 June 2012Google Scholar
  15. 129.
    Teleman N.: Local Algebraic K-Theory, 26 lug 2013 - arXiv.org > math > arXiv:1307.7014, 2013Google Scholar
  16. 131.
    Teleman N.: \(K_ {i}^{loc}(\ mathbb {C}) \), i = 0,  1 10 set 2013 - arXiv:1309.2421v1 [math.KT] 10 Sep 2013.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Neculai S. Teleman
    • 1
  1. 1.Dipartimento di Scienze MatematicheUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations