# Spaces, Bundles and Characteristic Classes in Differential Geometry

• Neculai S. Teleman
Chapter

## Abstract

Part II prepares the reader to see how some of the basic notions of differential geometry pass into non-commutative geometry. The basic notions presented in the first chapter are reconsidered in the second chapter from a non-commutative geometry view point. Differential geometry begins with the algebra $$\mathcal {A} = C^{\infty }(M)$$ of smooth functions and builds up by adding multiple structures; classical index theory uses most of these structures. Non-commutative geometry is abstract index theory; its axioms comprise many of these structures. While differential geometry is built by summing up different structures, non-commutative geometry reverses this process. In differential geometry the commutativity and locality assumptions are built in by means of the construction of differential forms. There are two basic differences which summarise the passage from differential geometry to non-commutative geometry: in differential geometry (1) the basic algebra $$\mathcal {A} = C^{\infty }$$is commutative, has true derivations (differential fields), and has a topology—the Fréchet topology; in non-commutative geometry, the basic algebra $$\mathcal {A}$$is not required to be commutative nor to have a topology, nor to have derivations, (2) in differential geometry, the basic algebra $$\mathcal {A}$$ is used to produce local objects; in non-commutative geometry the locality assumption is removed. Non-commutative geometry finds and uses the minimal structure which stays at the foundation of geometry: of differential forms, product of (some) distributions, bundles, characteristic classes, cohomology/homology and index theory. The consequences of this discovery are far reaching.

## References

1. 2.
Todd J. A.: The arithmetical invariants of Algebraic Loci. Proc. London Math. Soc. 43, 190–225, 1937.
2. 6.
Chern S.S.: Topics in Differential Geometry. Institute for Advanced Study, Mimeographed Notes, 1951Google Scholar
3. 9.
Eilenberg S., Mac Lane S., “On the groups of H(n). I”, Annals of Mathematics. Second Series 58: 55–106, ISSN 0003-486X, JSTOR 1969820, MR 0056295, 1953Google Scholar
4. 11.
Thom R.: Quelques propri$$\acute {e}$$t$$\acute {e}$$s globales des vari$$\acute {e}$$t$$\acute {e}$$s diff$$\acute {e}$$rentiables. Comment. Math. Helv. 28, pp. 17–86, 1954Google Scholar
5. 13.
S$$\acute {e}$$minaire Sophus Lie, I e ann$$\acute {e}$$e, 1954–1955. Th$$\acute {e}$$orie des Alg$$\acute {e}$$bres de Lie, Topologie des groupes de Lie, Paris, 1955Google Scholar
6. 15.
Cartan H., Eilenberg S. (1956), Homological algebra, Princeton Mathematical Series 19, Princeton University Press, ISBN 978-0-691-04991-5, MR 0077480, 1956Google Scholar
7. 16.
Grothendieck A.: Sur quelques points d’algebre homologiques. Tohoku math. J. p. 119–221, 1957
8. 17.
Atiyah M. F. (1957), “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc. 85: 181–207.
9. 18.
Rohlin V. A., Svarc A. S.: Combinatorial Invariance of the Pontrjagin classes. Docld. Acad. Nauk SSSR 114, pp. 490–493. (1957)
10. 22.
Weil A.: Introduction $$\grave {a}$$ l”$$\acute {e}$$tude des vari$$\acute {e}$$t$$\acute {e}$$s Kaeleriennes. Hermann, Paris, 1958.Google Scholar
11. 23.
Puppe D., Homotopie und Homologie in Abelschen Gruppen und Monoidkomplexen. I., II. Math. Z. 68 367–406, 407–421 (1958)
12. 24.
Thom R.: Les classes haractetistiques des varietes triangul$$\grave {e}$$es, Symposium Internacional de Topologia algebrica, 54–67, 1958.Google Scholar
13. 26.
Peetre J., Une charact$$\acute {e}$$risation abstraite des op$$\acute {e}$$ateurs difft$$\acute {e}$$rentiabls, Math. Scand. (7), pp. 211–218; 8, pp. 116–120, 1959
14. 31.
Whitehead G. W.: Generalised homology theories. Trans. Amer. Math. Soc., 102, pp. 227–283, 1962.
15. 32.
Hirzebruch F.: Neue topologische Methoden in der algebraischen Geometrie. Springer, 1962.
16. 34.
Kobayashi S., Nomizu K.: Foundations of Differential Geometry. Vol. I, Wileyi - Intersience, 1963Google Scholar
17. 38.
Atiyah M. F., Bott R., Shapiro A.: Clifford modules. Topology 3, pp. 3–38, 1964.
18. 39.
Milnor J.: Microbundles. Part I. Topology Vol. 3, pp. 53–80, 1964
19. 40.
Dixmier J.: Les C -alg$$\grave {e}$$bras et leur repr$$\acute {e}$$sentations. Cahier Scientifiques, Fasc. XXIX, Gautier-Villars, Paris, 1964.Google Scholar
20. 41.
Novikov S. P.: Topological Invariance of rational Pontrjagin classes. Doklady Mat. Nauk. 1963, pp. 921–923, 1965
21. 42.
Palais R.: Seminar on the Atiyah - Singer Index Theorem. Annals of Mathematics Studies 57, Princeton University Press, 1965Google Scholar
22. 43.
Swan R., Vector bundles and projective modules. Trans. Amer. Math. Soc. 105, 264–277, 1962
23. 44.
Teleman N.: A geometrical definition of some Andre Weil’s forms which can be associated with an infinitesimal connection, (Roumanian). St. Cerc. Math. Tom. 18, No. 5, pp. 753–762, Bucarest, 1966.Google Scholar
24. 45.
Spanier E. H.: Algebraic Topology, McGraw - Hill Series in Higher Mathematics, New York, 1966.
25. 47.
Wood R. : Banach algebras and Bott periodicity. Topology, pp. 377–389, 1965/1966.Google Scholar
26. 48.
Pradines J.: Theorie de Lie pour les groupoides differentiables. Calcul diff$$\acute {e}$$rentiel dans la categorie des groupoides infinitesimaux. C. R. Acad. Sc. Paris, t. 264, Serie A, pp. 245–248, 1967Google Scholar
27. 49.
Calderon A. P.: The analytic calculation of the index of elliptic operators. Proc. Nat. Acad. Sci. U.S.A., Vol. 57, pp. 1193–1194, 1967.
28. 50.
Atiyah M.F.: K-Theory, Benjamin, 1967.
29. 51.
Atiyah M. F.,Bott, R. (1967), A Lefschetz Fixed Point Formula for Elliptic Complexes: I, Annals of Mathematics, Second series 86 (2): 374–407. https://doi.org/10.2307/1970694, JSTOR 1970694
30. 52.
Teleman K.: Sur le charact‘ere de Chern d’un fibré complexe differentiable, Rev. Roumaine Math. Pures Applic. 12, pp. 725–731, 1967.
31. 53.
Atiyah M., Singer I. M.: The Index of elliptic operators: I, Ann. of Math. 87, 484–530, 1968.
32. 54.
Atiyah M., Singer I. M.: The Index of elliptic operators: III, Ann. of Math. 87, 546–604, 1968.
33. 56.
Kirby R., Siebenmann L. On the triangulation of manifolds and the Hauptvermutung. Bull. Amer. Math. Soc. 75, pp. 742–749, 1969
34. 57.
Bott R.: The periodicity theorem for the classical groups and some of its applications. Advances in Mathematics 4, 353–411, 1970
35. 58.
Singer I. M.: Future Extensions of Index Theory and Elliptic Operators. Prospects in Mathematics, Annals of Mathematics Studies Nr. 70, Princeton pp.171–185, 1971.
36. 60.
Hirzebruch F.: The signature theorem. Prospects in Mathematics, Annals of Mathematical Studies 70, pp. 3–31, Princeton University Press, 1971Google Scholar
37. 61.
H$$\ddot {o}$$rmander L., Fourier integral operators I, Acta Math., 127 (1971) pp. 79–183
38. 62.
Teleman N. : A characteristic ring of a Lie algebra extension. Note I., Note II Atti Accad. Nazionale Lincei Serie VIII, Vol. LII, pp.498–320. Atti Accad. Nazionale Lincei Serie VIII, Vol. LII, 1972, pp. 498–320, 1972Google Scholar
39. 63.
Bott R.: On the Chern-Weil homomorphism and the continuous cohomology of Lie groups. Advances in Mathematics 11, pp. 289–303, 1973
40. 66.
Milnor J.: Characteristic Classes, Annals of Mathematics Studies Nr. 76, Princeton, 1974Google Scholar
41. 67.
Kasparov G. G. :Topological Invariants of elliptic operators. I. K-homology (Russian) Vol. 39, pp. 796–838, 1975.Google Scholar
42. 68.
Mac Lane S.: Homology, Third Ed., Grundlehren der mathematischen Wissenschaften in Einzeldarstellung Band 114, Springer Verlag, Heidelberg, 1975.Google Scholar
43. 69.
Kirby R., Siebenmann L.: Foundational Essays on Topological Manifolds, Smoothings and Triangulations. Annals of Mathematical Studies 88, Princeton Univ. Press, 1977Google Scholar
44. 70.
Brown L. G. Douglas R. G., Fillmore P. A. : Extensions of -algebras and -homology, Ann. of Math., 105, pp. 265–324, 1977
45. 73.
Massey W. S., Homology and cohomology theory. An approach based on Alexander-Spanier cochains., Monographs and Textbooks in Pure and Applied Mathematics 46, New York: Marcel Dekker Inc., ISBN 978-0-8247-6662-7, MR 0488016), 1978Google Scholar
46. 75.
Sullivan D. : Hyperbolic geometry and homeomorphisms, in Geometric Topology, Proceedings Georgia Topology Conference, Athens, Georgia, 1977, pp. 543–555, Ed. J. C. Cantrell, Academic Press 1979.
47. 77.
Teleman N. : Combinatorial Hodge theory and Signature theorem, Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc. 36, 287–292, 1980Google Scholar
48. 78.
Teleman N.: Combinatorial Hodge Theory Inventiones Mathematicae. 61, 227–249, 1980.
49. 79.
Cheeger J.: On the Hodge theory of Riemannian pseudomanifolds. Amer. Soc. Proc. Sym. Pure Math, 36, 91–146. 1980.
50. 82.
Connes A.: Non-Commutative differential geometry. Publications Math$$\acute {e}$$matiques I.H.E.S. Vol. 62, pp.256–35, 1985.
51. 83.
Teleman N.: The Index of Signature Operators on Lipschitz Manifolds. Publ. Math. Paris, IHES, Vol. 58, pp. 251–290, 1983.
52. 84.
Teleman N.: The Index Theorem on Topological Manifolds. Acta Mathematica 153, 117–152, 1984
53. 86.
de Rham G.: Differentiable manifolds, Grundlehren der Mathematischen Wissenschaften. Fundamental Principles of Mathematical Sciences, vol. 266, Springer-Verlag, Berlin, 1984, Forms, currents, harmonic forms, Translated, 1984Google Scholar
54. 88.
Mackenzie K.: Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Notes 124, CUP, ISBN 978-0-521-34882-9, 1987Google Scholar
55. 89.
Karoubi M., Homologie cyclique et K-Th$$\acute {e}$$orie. Ast$$\acute {e}$$risque No. 149 (1987). Soc. Math. de France.Google Scholar
56. 92.
Donaldson S. K., Sullivan D.: Quasi-conformal 4-Manifolds, Acta Mathematica., Vol. 163 (1989), pp. 181–252.
57. 96.
Connes A., Moscovici H.: Cyclic Cohomology, the Novikov Conjecture and Hyperbolic Groups, Topology Vol. 29, pp.345–388, 1990.
58. 99.
Connes A.: Noncommutative Geometry, Academic Press, 1994.
59. 101.
Connes A., Sullivan D., Teleman N.: Quasiconformal Mappings, Operators on Hilbert Space and Local Formulae for Characteristic Classes, Topology Vol. 33, Nr. 4, pp. 663–681, 1994.Google Scholar
60. 105.
Mackenzie K. (1995), Lie algebroids and Lie pseudoalgebras. Bull. London Math. Soc. 27 (1995), pp. 97–147.
61. 116.
Teleman N.: Distance Function, Linear quasi-connections and Chern Character, IHES Prepublications M/04/27, June 2004.Google Scholar
62. 117.
Kubarski J., Teleman N. Linear Direct Connections, Proceedings 7th Conference on “Geometry and Topology of Manifolds - The Mathematical Legacy of Charles Ehresmann”, Betlewo, May 2005.Google Scholar
63. 118.
Mackenzie K. (2005), General theory of lie groupoids and lie algebroids, London Mathematical Society Lecture Notes 213, CUP, ISBN 978-0-521-49928-6, 2005Google Scholar
64. 121.
Teleman N.: Direct connections and Chern character, Singularity Theory, Proceedings of the Marseille Singularity School and Conference CIRM, Marseilles, 24 January - 25 February 2005, Eds. D. Cheniot, N. Duterte, C. Murolo, D. Trotman, A. Pichon. World Scientific Publishing Company, 2007.Google Scholar
65. 124.
Lescure J.- M., Teleman N.: The geometry of the signature operator, (unpublished), 2008Google Scholar