• Piotr T. Chruściel
Part of the Compact Textbooks in Mathematics book series (CTM)


In this chapter we will introduce the reader to the basic general relativistic cosmological models.


  1. 17.
    M. Betoule et al., Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys. 568, A22 (2014). arXiv:1401.4064 [astro-ph.CO].
  2. 21.
    V. Bonvin et al., H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model. Mon. Not. R. Astron. Soc. 465, 4914–4930 (2017). arXiv:1607.01790 [astro-ph.CO].
  3. 25.
    A. Conley et al., Supernova constraints and systematic uncertainties from the first 3 years of the supernova legacy survey. Astrophys. J. Suppl. 192, 1 (2011). arXiv:1104.1443 [astro-ph.CO].
  4. 32.
    L.P. Eisenhart, Riemannian Geometry. Princeton Landmarks in Mathematics (Princeton University Press, Princeton, NJ, 1997). Eighth printing, Princeton PaperbacksGoogle Scholar
  5. 41.
    B.T. Hayden et al., The rise and fall of type Ia supernova light curves in the SDSS-II supernova survey. Astrophys. J. 712, 350–366 (2010).
  6. 46.
    G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. Ser. 208, 19, 25 pp. (2013).
  7. 48.
    E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. 15, 168–173 (1929). Scholar
  8. 57.
    G. Lemaître, Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. A47, 49–59 (1927). Scholar
  9. 64.
    W.J. Percival et al., Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon. Not. R. Astron. Soc. 401, 2148–2168 (2010). arXiv:0907.1660 [astro-ph.CO].
  10. 66.
    S. Perlmutter et al., Cosmology from Type Ia supernovae. Bull. Am. Astron. Soc. 29, 1351 (1997). arXiv:astro-ph/9812473Google Scholar
  11. 67.
    Planck Collaboration, Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014). arXiv:1303.5062 [astro-ph.CO].
  12. 68.
    Planck Collaboration, Hubble’s law and the expanding universe. Proc. Natl. Acad. Sci. 112, 3173–3175 (2015).
  13. 69.
    Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). arXiv:1502.01589 [astro-ph.CO].
  14. 70.
    Planck Collaboration, Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. (2018), in press. arXiv:1807.06209 [astro-ph.CO]Google Scholar
  15. 74.
    A.G. Riess et al., New parallaxes of galactic Cepheids from spatially scanning the Hubble Space Telescope: implications for the Hubble constant. Astrophys. J. 855, 136 (2018). arXiv:1801.01120 [astro-ph.SR].
  16. 75.
    C. Ripken, Coordinate Systems in De Sitter Spacetime, Bachelor thesis (2013),
  17. 80.
    M. Spradlin, A. Strominger, A. Volovich, Les Houches lectures on de Sitter space, in Unity from Duality: Gravity, Gauge Theory and Strings. Proceedings, NATO Advanced Study Institute, Les Houches, 30 July–31 August 2001, pp. 423–453. arXiv:hep-th/0110007 [hep-th]Google Scholar
  18. 81.
    M. Sullivan et al., SNLS3: constraints on dark energy combining the Supernova Legacy Survey three year data with other probes. Astrophys. J. 737, 102 (2011). arXiv:1104.1444 [astro-ph.CO].
  19. 82.
    N. Suzuki et al., The hubble space telescope cluster supernova survey: V. Improving the dark energy constraints above z > 1 and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012). aXiv:1105.3470 [astro-ph.CO].

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Piotr T. Chruściel
    • 1
  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations