Advertisement

Weak Fields and Gravitational Waves

  • Piotr T. Chruściel
Chapter
  • 77 Downloads
Part of the Compact Textbooks in Mathematics book series (CTM)

Abstract

The aim of this chapter is to present some essential ingredients of the proof of the Einstein quadrupole formula for the rate of loss of energy by a gravitating system into gravitational waves. On the way towards this we will also verify that Einstein equations reduce to Newton’s in an appropriate limit.

References

  1. 1.
    B.P. Abbott et al., GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016). arXiv:1606.04855 [gr-qc].  https://doi.org/10.1103/PhysRevLett.116.241103
  2. 2.
    B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:1602.03837 [gr-qc].  https://doi.org/10.1103/PhysRevLett.116.061102
  3. 3.
    B.P. Abbott et al., First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Phys. Rev. D96(12), 122004 (2017). arXiv:1707.02669 [gr-qc].  https://doi.org/10.1103/PhysRevD.96.122004
  4. 4.
    B.P. Abbott et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. 848, L13 (2017). arXiv:1710.05834 [astro-ph.HE]. https://doi.org/10.3847/2041-8213/aa920c
  5. 5.
    B.P. Abbott et al., GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017). arXiv:1706.01812 [gr-qc].  https://doi.org/10.1103/PhysRevLett.118.221101
  6. 6.
    B.P. Abbott et al., Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12 (2017). arXiv:1710.05833 [astro-ph.HE]. https://doi.org/10.3847/2041-8213/aa91c9
  7. 7.
    B.P. Abbott et al., GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs (2018). arXiv:1811.12907 [astro-ph.HE]Google Scholar
  8. 8.
    B.P. Abbott et al., Searches for continuous gravitational waves from fifteen Supernova remnants and Fomalhaut b with Advanced LIGO (2018). arXiv:1812.11656 [astro-ph.HE]Google Scholar
  9. 9.
    A. Albert et al., Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys. J. 850, L35 (2017). https://doi.org/10.3847/2041-8213/aa9aedCrossRefGoogle Scholar
  10. 10.
    L. Andersson, R. Beig, B.G. Schmidt, Rotating elastic bodies in Einstein gravity. Commun. Pure Appl. Math. 63, 559–589 (2010).  https://doi.org/10.1002/cpa.20302MathSciNetzbMATHGoogle Scholar
  11. 11.
    N. Andersson et al., The transient gravitational-wave sky. Classical Quantum Gravity 30, 193002 (2013). arXiv:1305.0816 [gr-qc]. https://doi.org/10.1088/0264-9381/30/19/193002
  12. 12.
    H. Andréasson, M. Kunze, G. Rein, Rotating, stationary, axially symmetric spacetimes with collisionless matter. Commun. Math. Phys. 329, 787–808 (2012). arXiv:1212.5028 [gr-qc]. https://doi.org/10.1007/s00220-014-1904-5
  13. 13.
    J. Antoniadis et al., A massive pulsar in a compact relativistic binary. Science 340, 6131 (2013). arXiv:1304.6875 [astro-ph.HE].  https://doi.org/10.1126/science.1233232
  14. 14.
    R. Beig, W. Simon, Proof of a multipole conjecture due to Geroch. Commun. Math. Phys. 78, 75–82 (1980)MathSciNetCrossRefGoogle Scholar
  15. 19.
    I. Białynicki-Birula, Z. Białynicka-Birula, Gravitational waves carrying orbital angular momentum. New J. Phys. 18, 023022 (2016). arXiv:1511.08909 [gr-qc]. https://doi.org/10.1088/1367-2630/18/2/023022
  16. 23.
    A. Buonanno, Gravitational waves, in Les Houches Summer School - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime Les Houches, 31 July–25 August 2006 (2007). arXiv:0709.4682 [gr-qc]Google Scholar
  17. 26.
    J. Creswell, S. von Hausegger, A.D. Jackson, H. Liu, P. Naselsky, On the time lags of the LIGO signals. J. Cosmol. Astropart. Phys. 1708, 013 (2017). https://doi.org/10.1088/1475-7516/2017/08/013CrossRefGoogle Scholar
  18. 29.
    F. Dyson, Interstellar Communication, Chap. 12 (A.G. Cameron, New York, 1963)Google Scholar
  19. 30.
    J. Ehlers, Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie. Fundamental Problems of Modern Physics (Bibliographisches Inst., Mannheim, 1981), pp. 65–84Google Scholar
  20. 42.
    U. Heilig, On the existence of rotating stars in general relativity. Commun. Math. Phys. 166, 457–493 (1995)MathSciNetCrossRefGoogle Scholar
  21. 55.
    M. Kramer, Probing gravitation with pulsars. IAU Symp. 291, 19–26 (2013). arXiv:1211.2457 [astro-ph.HE]. https://doi.org/10.1017/S174392131202306X
  22. 62.
    T.A. Oliynyk, Post-Newtonian expansions for perfect fluids. Commun. Math. Phys. 288, 847–886 (2009). https://doi.org/10.1007/s00220-009-0738-zMathSciNetCrossRefGoogle Scholar
  23. 63.
    T.A. Oliynyk, A rigorous formulation of the cosmological Newtonian limit without averaging. J. Hyperbolic Differ. Equ. 7, 405–431 (2010). https://doi.org/10.1142/S0219891610002189MathSciNetCrossRefGoogle Scholar
  24. 72.
    A.D. Rendall, The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system. Commun. Math. Phys. 163, 89–112 (1994). http://projecteuclid.org/euclid.cmp/1104270381MathSciNetCrossRefGoogle Scholar
  25. 85.
    M.E. Taylor, Partial Differential Equations III. Nonlinear Equations. Applied Mathematical Sciences, vol. 117, 2nd edn. (Springer, New York, 2011)Google Scholar
  26. 86.
    K.S. Thorne, Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299–339 (1980).  https://doi.org/10.1103/RevModPhys.52.299MathSciNetCrossRefGoogle Scholar
  27. 87.
    J.M. Weisberg, Y. Huang, Relativistic measurements from timing the binary pulsar PSR B1913+16. Astrophys. J. 829, 55 (2016). arXiv:1606.02744 [astro-ph.HE]. https://doi.org/10.3847/0004-637X/829/1/55
  28. 90.
    S. Yang, On the geodesic hypothesis in general relativity. Commun. Math. Phys. 325, 997–1062 (2014). arXiv:1209.3985 [math.AP]. https://doi.org/10.1007/s00220-013-1834-7

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Piotr T. Chruściel
    • 1
  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations