Advertisement

Kidney Cancer pp 303-325 | Cite as

Application of Immunohistochemistry in Diagnosis of Renal Cell Neoplasms

  • Fang-Ming DengEmail author
  • Qihui Jim Zhai
Chapter

Abstract

Renal neoplasms comprise a heterogeneous group of tumors with divergent clinicopathological and molecular characteristics as well as therapeutic options. Therefore, accurate diagnosis and classification of the different subtypes of renal cell carcinoma (RCC), and to verify the renal primary in the setting of metastatic disease are critical for patient management and determining prognosis. In the last three decades, more and more subtypes of RCC have been described and many of them have overlapping clinicomorphologic features. Incorporating diagnostic immunohistochemistry and molecular tests in diagnosis of renal tumors is a critical component of our daily surgical pathology practice. In this chapter, we will discuss the immunohistochemical markers that are commonly used in clinical laboratories. In addition, common diagnostic problems that deserve special attention in the differential diagnosis of major RCC subtypes will also be addressed.

Keywords

Kidney Renal cell carcinoma Differential diagnosis of renal carcinoma Classification of renal cell carcinoma Immunohistochemistry of renal cell carcinoma 

References

  1. 1.
    Zhou M, Roma A, Magi-Galluzzi C. The usefulness of immunohistochemical markers in the differential diagnosis of renal neoplasms. Clin Lab Med. 2005;25(2):247–57.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Skinnider BF, Amin MA. An immunohistochemical approach to the differential diagnosis of renal tumors. Semin Diagn Pathol. 2005;22(1):51–68.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Hammerich KH, Ayala GE, Wheeler TM. Application of immunohistochemistry to the genitourinary system (prostate, urinary bladder, testis, and kidney). Arch Pathol Lab Med. 2008;132(3):432–40.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Truong LD, Shen SS. Immunohistochemical diagnosis of renal neoplasms. Arch Pathol Lab Med. 2011;135(1):92–109.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Shen SS, Truong LD, Scarpelli M, Lopez-Beltran A. Role of immunohistochemistry in diagnosing renal neoplasms: when is it really useful? Arch Pathol Lab Med. 2012;136(4):410–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Reuter VE, Argani P, Zhou M, Delahunt B, et al. Best practices recommendations in the application of immunohistochemistry in the kidney tumors: report from the International Society of Urologic Pathology consensus conference. Am J Surg Pathol. 2014;38(8):e35–49.CrossRefGoogle Scholar
  7. 7.
    Zhou M, Deng FM. The utility of immunohistochemistry in the differential diagnosis of renal cell carcinoma. In: Magi-Galluzzi C, Przybycin G, editors. Genitourinary pathology: practical advances. New York: Springer Science; 2015. p. 383–99.Google Scholar
  8. 8.
    Deng FM, Zhou M. Molecular genetics and immunohistochemistry of renal tumours: translation into clinical practice. Diagn Histopathol. 2016;22(2):73–9.CrossRefGoogle Scholar
  9. 9.
    Al-Ahmadie HA, Alden D, Fines SW, Gopalan A, Touijer KA, Russo P, et al. Role of immunohistochemistry in the evaluation of needle core biopsies in adult renal cortical tumors: an ex vivo study. Am J Surg Pathol. 2011;35(7):949–61.CrossRefGoogle Scholar
  10. 10.
    Alderman MA, Daignault S, Wolf JS Jr, Palapattu GS, Weizer AZ, et al. Categorizing renal oncocytic neoplasms on core needle biopsy: a morphologic and immunophenotypic study of 144 cases with clinical follow-up. Hum Pathol. 2016;55:1–10.CrossRefGoogle Scholar
  11. 11.
    Gupta R, Balzer B, Picken M, Osunkoya AO, Shet T, Alsabeh R, et al. Diagnostic implications of transcription factor Pax 2 protein and transmembrane enzyme complex carbonic anhydrase IX immunoreactivity in adult renal epithelial neoplasms. Am J Surg Pathol. 2009;33(2):241–7.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Ozcan A, de la Roza G, Ro JY, Shen SS, Truong LD. PAX2 and PAX8 expression in primary and metastatic renal tumors: a comprehensive comparison. Arch Pathol Lab Med. 2016;136(12):1541–51.CrossRefGoogle Scholar
  13. 13.
    McGregor DK, Khurana KK, Cao C, Ayala G, Krishnan B, et al. Diagnosing primary and metastatic renal cell carcinoma: the use of the monoclonal antibody ‘Renal Cell Carcinoma Marker’. Am J Surg Pathol. 2001;25(12):1485–92.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lin F, Zhang PL, Yang XJ, Shi J, Blasick T, Han WK, et al. Human kidney injury molecule-1 (hKIM-1): a useful immunohistochemical marker for diagnosing renal cell carcinoma and ovarian clear cell carcinoma. Am J Surg Pathol. 2007;31(3):371–81.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ivanov S, Liao SY, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, et al. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol. 2001;158(3):905–19.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhou M, Chinnaiyan AM, Kleer CG, Lucas PC, Rubin MA. Alpha-Methylacyl-CoA racemase: a novel tumor marker over-expressed in several human cancers and their precursor lesions. Am J Surg Pathol. 2002;26(7):926–31.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Molinie V, Balaton A, Rotman S, Mansouri D, De Pinieux I, Homsi T, et al. Alpha-methyl CoA racemase expression in renal cell carcinomas. Hum Pathol. 2006;37(6):698–703.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Young AN, de Oliveira Salles PG, Lim SD, Cohen C, Petros JA, Marshall FF, et al. Beta defensin-1, parvalbumin, and vimentin: a panel of diagnostic immunohistochemical markers for renal tumors derived from gene expression profiling studies using cDNA microarrays. Am J Surg Pathol. 2003;27(2):199–205.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Shen SS, Krishna B, Chirala R, Amato RJ, Truong LD. Kidney-specific cadherin, a specific marker for the distal portion of the nephron and related renal neoplasms. Mod Pathol. 2005;18(7):933–40.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Huo L, Sugimura J, Tretiakova MS, Patton KT, Gupta R, Popov B, et al. C-kit expression in renal oncocytomas and chromophobe renal cell carcinomas. Hum Pathol. 2005;36(3):262–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Castillo M, Petit A, Mellado B, Palacín A, Alcover JB, Mallofré C. C-kit expression in sarcomatoid renal cell carcinoma: potential therapy with imatinib. J Urol. 2004;171(6 Pt 1):2176–80.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Argani P, Lal P, Hutchinson B, Lui MY, Reuter VE, Ladanyi M. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol. 2003;27(6):750–61.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Argani P, Lae M, Hutchinson B, Reuter VE, Collins MH, Perentesis J, et al. Renal carcinomas with the t(6;11)(p21;q12): clinicopathologic features and demonstration of the specific alpha-TFEB gene fusion by immunohistochemistry, RT-PCR, and DNA PCR. Am J Surg Pathol. 2005;29(2):230–40.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Camparo P, Vasiliu V, Molinie V, Couturier J, Dykema KJ, Petillo D, et al. Renal translocation carcinomas: clinicopathologic, immunohistochemical, and gene expression profiling analysis of 31 cases with a review of the literature. Am J Surg Pathol. 2008;32(5):656–70.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Martignoni G, Pea M, Gobbo S, Brunelli M, Bonetti F, Segala D, et al. Cathepsin-K immunoreactivity distinguishes MiTF/TFE family renal translocation carcinomas from other renal carcinomas. Mod Pathol. 2009;22(8):1016–22.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Martignoni G, Bonetti F, Chilosi M, Brunelli M, Segala D, Amin MB, et al. Cathepsin K expression in the spectrum of perivascular epithelioid cell (PEC) lesions of the kidney. Mod Pathol. 2012;25(1):100–11.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Albadine R, Schultz L, Illei P, Ertoy D, Hicks J, Sharma R, et al. PAX8 (+)/p63 (−) immunostaining pattern in renal collecting duct carcinoma (CDC): a useful immunoprofile in the differential diagnosis of CDC versus urothelial carcinoma of upper urinary tract. Am J Surg Pathol. 2010;34(7):965–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Trpkov K, Abou-Ouf H, Hes O, Lopez JI, Nesi G, Comperat E, et al. Eosinophilic Solid and Cystic Renal Cell Carcinoma (ESC RCC): further morphologic and molecular characterization of ESC RCC as a distinct entity. Am J Surg Pathol. 2017;41(10):1299–308.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Palsgrove DN, Li Y, Pratilas C, Lin MT, Pallavajjalla A, Gocke C, et al. Eosinophilic Solid and Cystic (ESC) renal cell carcinomas harbor TSC mutations: molecular analysis supports an expanding clinicopathologic spectrum. Am J Surg Pathol. 2018;  https://doi.org/10.1097/PAS.0000000000001111.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Choueiri TK, Cheville J, Palescandolo E, Fay AP, Kantoff PW, Atkins MB, et al. BRAF mutations in metanephric adenoma of the kidney. Eur Urol. 2012;62(5):91722.CrossRefGoogle Scholar
  31. 31.
    Kinney SN, Eble JN, Hes O, Williamson SR, Grignon DJ, Wang M, et al. Metanephric adenoma: the utility of immunohistochemical and cytogenetic analyses in differential diagnosis, including solid variant papillary renal cell carcinoma and epithelial-predominant nephroblastoma. Mod Pathol. 2015;28(9):1236–48.CrossRefGoogle Scholar
  32. 32.
    Ohe C, Smith SC, Sirohi D, Divatia M, de Peralta-Venturina M, Paner GP, et al. Reappraisal of morphologic differences between renal medullary carcinoma, collecting duct carcinoma, and fumarate hydratase-deficient renal cell carcinoma. Am J Surg Pathol. 2018;42(3):279–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Rao P, Tannir NM, Tamboli P. Expression of OCT3/4 in renal medullary carcinoma represents a potential diagnostic pitfall. Am J Surg Pathol. 2012;36(4):583–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen YB, Brannon AR, Toubaji A, Dudas ME, Won HH, Al-Ahmadie HA, et al. Hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cancer: recognition of the syndrome by pathologic features and the utility of detecting aberrant succination by immunohistochemistry. Am J Surg Pathol. 2014;38(5):627–37.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gill AJ, Pachter NS, Clarkson A, Tucker KM, Winship IM, Benn DE, et al. Renal tumors and hereditary pheochromocytoma-paraganglioma syndrome type 4. N Engl J Med. 2011;364:885–6.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Gill AJ, Hes O, Papathomas T, Šedivcová M, Tan PH, Agaimy A, et al. Succinate dehydrogenase (SDH)-deficient renal carcinoma: a morphologically distinct entity: a clinicopathologic series of 36 tumors from 27 patients. Am J Surg Pathol. 2014;38(12):1588–602.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Li Y, Reuter VE, Matoso A, Netto GJ, Epstein JI, Argani P. Re-evaluation of 33 ‘unclassified’ eosinophilic renal cell carcinomas in young patients. Histopathology. 2018;72(4):588–600.PubMedCrossRefGoogle Scholar
  38. 38.
    Deng FM, Kong M, Zhou M. Papillary or pseudopapillary tumors of the kidney. Semin Diagn Pathol. 2015;32:124–39.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Aydin H, Chen L, Cheng L, Vaziri S, He H, Ganapathi R, et al. Clear cell tubulopapillary renal cell carcinoma: a study of 36 distinctive low-grade epithelial tumors of the kidney. Am J Surg Pathol. 2010;34(11):1608–21.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Atkins M, Regan M, McDermott D, Mier J, Stanbridge E, Youmans A, et al. Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. Clin Cancer Res. 2005;11(10):3714–21.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Stillebroer AB, Mulders PF, Boerman OC, Oyen WJ, Oosterwijk E. Carbonic anhydrase IX in renal cell carcinoma: implications for prognosis, diagnosis, and therapy. Eur Urol. 2010;58(1):75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Choueiri TK, Regan MM, Rosenberg JE, et al. Carbonic anhydrase IX and pathological features as predictors of outcome in patients with metastatic clear-cell renal cell carcinoma receiving vascular endothelial growth factor-targeted therapy. BJU Int. 2010;106:772–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    TK C, Cheng S, Qu AQ, Pastorek J, Atkins MB, Signoretti S. Carbonic anhydrase IX as a potential biomarker of efficacy in metastatic clear-cell renal cell carcinoma patients receiving sorafenib or placebo: analysis from the treatment approaches in renal cancer global evaluation trial (TARGET). Urol Oncol. 2013;8:1788–93.Google Scholar
  44. 44.
    Jiang Z, Chu PG, Kang Y, Lee SS. Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: a retrospective study. Lancet Oncol. 2006;7(7):556–64.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Hakimi AA, Chen YB, Wren J, Gonen M, Abdel-Wahab O, Heguy A, et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur Urol. 2013;63(5):848–54.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PathologyNew York University Langone Medical HealthNew YorkUSA
  2. 2.Department of Laboratory Medicine and PathologyMayo ClinicJacksonvilleUSA

Personalised recommendations