Fusion and Supercharacters

  • Kenneth W. Johnson
Part of the Lecture Notes in Mathematics book series (LNM, volume 2233)


In this chapter the idea of fusion of the character table of a group is pursued in more detail. First the question of which groups have the property that their character table is a fusion of that of an abelian group is addressed. It proved difficult to answer this question but many results can be obtained. There is given an explicit description of the finite groups whose character tables fuse from a cyclic group. Then there is given an account of how the idea of fusion was independently discovered and used in the context of upper triangular groups UTn(q) by Diaconis and Isaacs. Their motive was that whereas the character tables of UTn(q) are “wild” certain fusions are not and random walks on the groups can be discussed. The interesting result that a fusion of the character table gives rise to a Hopf algebra is presented. There is also given a construction of a fusion of the character table of UT4(q) by taking the class algebra of a loop constructed by an alternative multiplication on the elements on the elements of the group.


  1. 2.
    M. Aguiar, C. André, C. Benedetti et al., Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras. Adv. Math. 229, 2310–2337 (2012)MathSciNetCrossRefGoogle Scholar
  2. 5.
    E. Arias-Castro, P. Diaconis, R. Stanley, A super-class walk on upper-triangular matrices. J. Algebra 278, 739–765 (2004)MathSciNetCrossRefGoogle Scholar
  3. 86.
    P. Diaconis, M. Isaacs, Supercharacters and superclasses for algebra groups. Trans. Am. Math. Soc. 360, 2359–2392 (2008)MathSciNetCrossRefGoogle Scholar
  4. 120.
    I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, J.-Y. Thibon, Noncommutative symmetric functions. Adv. Math. 112, 218–348 (1995)MathSciNetCrossRefGoogle Scholar
  5. 134.
    M. Hall, Jr., The Theory of Groups (Chelsea Publishing, New York, 1976)Google Scholar
  6. 142.
    A.O.F. Hendrickson, Supercharacter theory constructions corresponding to Schur ring products. Commun. Algebra, 40, 4420–4238 (2012)MathSciNetCrossRefGoogle Scholar
  7. 152.
    S.P. Humphries, K.W. Johnson, Fusions of character tables and Schur rings of abelian groups. Commun. Algebra 36, 1437–1460 (2008)MathSciNetCrossRefGoogle Scholar
  8. 153.
    S.P. Humphries, K.W. Johnson, Fusions of character tables. II. p-groups. Commun. Algebra 37, 4296–4315 (2009)MathSciNetCrossRefGoogle Scholar
  9. 156.
    S.P. Humphries, K.W. Johnson, B.L. Kerby, Fusions of character tables III: fusions of cyclic groups and a generalisation of a condition of Camina. Israel J. Math. 178, 325–348 (2010)MathSciNetCrossRefGoogle Scholar
  10. 158.
    B. Huppert, Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften, vol. 134 (Springer, Berlin, 1967)Google Scholar
  11. 177.
    K.W. Johnson, J.D.H. Smith, A note on character induction in association schemes. Eur. J. Comb. 7, 139 (1986)MathSciNetCrossRefGoogle Scholar
  12. 178.
    K.W. Johnson, J.D.H. Smith, Characters of finite quasigroups. III. Quotients and fusion. Eur. J. Comb. 10, 47–56 (1989)MathSciNetCrossRefGoogle Scholar
  13. 185.
    K.W. Johnson, M. Munywoki, J.D.H. Smith, The upper triangular algebra loop of degree 4. Comment. Math. Univ. Carol. 55, 457–470 (2014)MathSciNetzbMATHGoogle Scholar
  14. 201.
    C.R. Leedham-Green, S. McKay, The Structure of Groups of Prime Power Order. London Mathematical Society Monographs. Oxford Science Publications, vol. 27 (Oxford University Press, Oxford, 2002)Google Scholar
  15. 203.
    K.H. Leung, S.L. Ma, The structure of Schur rings over cyclic groups. J. Pure Appl. Algebra 66, 287–302 (1990)MathSciNetCrossRefGoogle Scholar
  16. 204.
    K.H. Leung, S.H. Man, On Schur rings over cyclic groups. Israel J. Math. 106, 251–267 (1998)MathSciNetCrossRefGoogle Scholar
  17. 210.
    W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory (Dover, New York, 1976)zbMATHGoogle Scholar
  18. 221.
    M. Muzychuk, M. Klin, R. Pöschel, The isomorphism problem for circulant graphs via Schur ring theory, in Codes and Association Schemes (Piscataway, 1999). DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 56 (American Mathematical Society, Providence, 2001), pp. 241–264CrossRefGoogle Scholar
  19. 237.
    R. Poschel, Untersuchungen von S-ringen, insbesondere im Gruppenring von p-Gruppen. Math. Nachr. 60, 1–27 (1974)MathSciNetCrossRefGoogle Scholar
  20. 245.
    M.H. Rosas, B.E. Sagan, Symmetric functions in noncommuting variables. Trans. Am. Math. Soc. 358, 215–232 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kenneth W. Johnson
    • 1
  1. 1.Department of MathematicsPennsylvania State UniversityAbingtonUSA

Personalised recommendations