Advertisement

Fourier Analysis on Groups, Random Walks and Markov Chains

  • Kenneth W. Johnson
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2233)

Abstract

In Chap.  1 it is explained that if p is a probability on a finite group G the group matrix XG(p) is a transition matrix for a random walk on G. If f is an arbitrary function on G the process of transforming XG(f) into a block diagonal matrix is equivalent to the obtaining the Fourier transform of f. This chapter explains the connections with harmonic analysis and the group matrix. Most of the discussion is on probability theory and random walks.

The fusion of characters discussed in Chap.  4 becomes relevant, and also the idea of fission of characters is introduced, especially those fissions which preserve diaonalizability of the corresponding group matrix. As an example of how the group matrix and group determinant can be used as tools, their application to random walks which become uniform after a finite number of steps is examined.

References

  1. 1.
    S. Agaian, J. Astola, K. Egiazarian, Binary Polynomial Transforms and Nonlinear Digital Filters (Marcel Dekker, New York, 1995)zbMATHGoogle Scholar
  2. 3.
    D. Aldous, Random walks on finite groups and rapidly mixing Markov chains, in Séminaire de Probabilités, XVII. Lecture Notes in Mathematics, vol. 986 (Springer, Berlin 1983), pp. 243–297Google Scholar
  3. 7.
    L. Auslander, P. Tolmieri, Is computing with finite Fourier transforms pure or applied mathematics? Bull. Am. Math. Soc. (N.S.) 1, 847–897 (1979)Google Scholar
  4. 13.
    D. Bayer, P. Diaconis, Trailing the dovetail shuffle to its lair. Ann. Appl. Probab. 2, 294–313 (1986)MathSciNetCrossRefGoogle Scholar
  5. 23.
    E. Borel, A. Chéron, Théorie Mathématique du Bridge á la Portée de Tous (Gauthier-Villars, Paris 1940)zbMATHGoogle Scholar
  6. 29.
    R. Brauer, Über die Kleinsche Theorie der algebraischen Gleichungen. Math. Ann. 110, 473–500 (1935)MathSciNetCrossRefGoogle Scholar
  7. 31.
    E.O. Brigham, The Fast Fourier Transform (Prentice-Hall, Englewood Cliffs, 1974)zbMATHGoogle Scholar
  8. 40.
    C.S. Burrus, T.W. Parks, DFT/FFT and Convolution Algorithms: Theory and Implementation (Wiley, New York, 1985)zbMATHGoogle Scholar
  9. 54.
    T. Ceccherini-Silberstein, F. Scarabotti, F. Tolli, Harmonic Analysis on Finite Groups. Cambridge Studies in Advanced Mathematics, vol. 108 (Cambridge University Press, Cambridge, 2008)Google Scholar
  10. 65.
    J.W. Cooley, The re-discovery of the fast Fourier transform algorithm. Mikrochim. Acta III, 33–45 (1987)CrossRefGoogle Scholar
  11. 72.
    P.J. Davis, Circulant Matrices (Chelsea, New York, 1994)zbMATHGoogle Scholar
  12. 82.
    P. Diaconis, Group Representations in Probability and Statistics (Institute of Mathematical Statistics, Hayward, 1988)Google Scholar
  13. 84.
    P. Diaconis, The cutoff phenomenon in finite Markov chains. Proc. Nat. Acad. Sci. 43, 1659–1664 (1995)MathSciNetzbMATHGoogle Scholar
  14. 85.
    P. Diaconis, Random walks on groups: characters and geometry, in Groups St. Andrews 2001 in Oxford, vol. I. London Mathematical Society Lecture Note Series, vol. 304 (Cambridge University Press, Cambridge, 2003), pp. 120–142Google Scholar
  15. 87.
    P. Diaconis, D. Rockmore, Efficient computation of the Fourier transform on finite groups. J. Am. Math. Soc. 3, 297–332 (1990)MathSciNetCrossRefGoogle Scholar
  16. 88.
    P. Diaconis, M. Shahshahani, Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Geb. 57, 159–179 (1981)MathSciNetCrossRefGoogle Scholar
  17. 140.
    M.T. Heidemann, D.H. Johnson, C.S. Burrus, Gauss and the history of the fast Fourier transform. Arch. Hist. Exact Sci. 34, 265–277 (1985)MathSciNetCrossRefGoogle Scholar
  18. 157.
    S.P. Humphries, K.W. Johnson, A. Misseldine, Commutative S-rings of maximal dimension. Commun. Algebra 43, 5298–5327 (2015)MathSciNetCrossRefGoogle Scholar
  19. 187.
    J. Karlof, The subclass algebra associated to a finite group and a subgroup. Trans. Am. Math. Soc. 207, 329–341 (1975)MathSciNetCrossRefGoogle Scholar
  20. 199.
    D. Kosambi, U.V.R. Rao, The efficiency of randomization by card shuffling. J. R. Stat. Soc. A 128, 223–233 (1958)CrossRefGoogle Scholar
  21. 205.
    D.A. Levin, Y. Peres, E.L. Wilmer, Markov Chains and Mixing Times (American Mathematical Society, Providence, 2009)zbMATHGoogle Scholar
  22. 208.
    G.W. Mackey, Harmonic analysis as the exploitation of symmetry—a historical survey. Bull. Am. Math. Soc. (N.S.) 3, 543–698 (1980)MathSciNetCrossRefGoogle Scholar
  23. 209.
    G.W. Mackey, The Scope and History of Commutative and Noncommutative Harmonic Analysis. History of Mathematics, vol. 5 (American Mathematical Society, Providence; London Mathematical Society, London, 1992)Google Scholar
  24. 214.
    D.K. Maslen, D.N. Rockmore, Separation of variables and the computation of Fourier transforms on finite groups. J. Am. Math. Soc. 10, 169–214 (1997)MathSciNetCrossRefGoogle Scholar
  25. 215.
    D.K. Maslen, D.N. Rockmore, The Cooley-Tukey FFT and group theory. Notices Am. Math. Soc. 48, 1151–1160 (2001)MathSciNetzbMATHGoogle Scholar
  26. 225.
    H.J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms (Springer, Berlin, 1981)CrossRefGoogle Scholar
  27. 227.
    A. Okounkov, A.M. Vershik, A new approach to the representation theory of the symmetric groups. Sel. Math. (N.S.) 2, 581–605 (1996)Google Scholar
  28. 234.
    H. Poincaré, Sur l’intégration des équations linéaires et les périodes des intégrales abéliennes. J. des Math. Pures Appl. 9(5), 139–212 (1903), Oeuvres 3, 106–166Google Scholar
  29. 235.
    H. Poincaré, Calcul des Probabilités (Gautier-Villars, Paris, 1912)zbMATHGoogle Scholar
  30. 243.
    F. Roesler, Darstellungstheorie von Schur-Algebren. Math. Zeitshrift 125, 32–58 (1972)MathSciNetGoogle Scholar
  31. 248.
    L. Saloff-Coste, Random Walks on Finite Groups, in Probability on Discrete Structures Encyclopaedia of Mathematical Sciences, vol. 110 (Springer, Berlin, 2004), pp. 263–346zbMATHGoogle Scholar
  32. 260.
    J.D.H. Smith, Induced class functions are conditional expectations. Eur. J. Comb. 10, 293–296 (1989)MathSciNetCrossRefGoogle Scholar
  33. 267.
    R.S. Stanković, C. Moraga, J. Astola, Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design (Wiley-IEEE Press, Hoboken, 2005)CrossRefGoogle Scholar
  34. 270.
    L. Takács, Harmonic analysis on Schur algebras and its applications in the theory of probability, in Probability Theory and Harmonic Analysis, ed. by J.-A. Chao, W.A. Woyczyński (Marcel Dekker, New York, 1986)zbMATHGoogle Scholar
  35. 276.
    A. Terras, Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts, vol. 43 (Cambridge University Press, Cambridge, 1999)Google Scholar
  36. 279.
    R. Tolmieri, M. An, C. Lu, Algorithms for Discrete Fourier Transforms and Convolutions (Springer, New York, 1989)CrossRefGoogle Scholar
  37. 285.
    A.L. Vyshnevetskiy, E.M. Zhmud’, Random walks on finite groups converging after finite number of steps. Algebra Discret. Math. 2, 123–129 (2008)Google Scholar
  38. 295.
    E. Wigner, Restriction of irreducible representations of groups to a subgroup. Proc. R. Soc. Lond. Ser. A 322, 181–189 (1971)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kenneth W. Johnson
    • 1
  1. 1.Department of MathematicsPennsylvania State UniversityAbingtonUSA

Personalised recommendations