Norm Forms and Group Determinant Factors

  • Kenneth W. Johnson
Part of the Lecture Notes in Mathematics book series (LNM, volume 2233)


The usual approach to group representations in modern texts is via the theory of algebras and modules. This chapter is based on a less well-known constructive approach to the theory of algebras which uses the generalization to noncommutative algebras of a (multiplicative) norm, which can be applied to obtain results on group determinants. This continues a line of research which goes back to Frobenius. Significant results which have not been translated into modern abstract accounts are to be found there. An essential result is that given a norm-type form on an algebra with suitable assumptions, the form can be constructed rationally from the first three coefficients of its “characteristic equation”. This, applied to the group determinant, shows that the 1-, 2- and 3-characters determine a group.


  1. 12.
    A. Baumgartner, Über Kompositionsalgeben beliebigen Grades. Dissertation Universität Düsseldorf, 1970Google Scholar
  2. 15.
    A. Bergmann, Formen auf Moduln über kommutativen Ringen beliebiger Charakteristik. J. Reine Angew. Math. 219, 113–156 (1965)MathSciNetzbMATHGoogle Scholar
  3. 16.
    A. Bergmann, Hauptnorm und Struktur von Algebren. J. Reine Angew. Math. 222, 160–194 (1966)MathSciNetzbMATHGoogle Scholar
  4. 17.
    A. Bergmann, Reduzierte Normen und Theorie von Algebren, in Algebra-Tagung Halle 1986, Tagungsband Wiss (Beiträge Halle (Saale) 1987/33 (M48) 1987), pp. 29–57Google Scholar
  5. 28.
    H. Brandt, Idealtheorie in Quaternionalgebren. Math. Ann. 99, 1–29 (1928)CrossRefGoogle Scholar
  6. 36.
    V.M. Buchstaber, E.G. Rees, The Gel’fand map and symmetric products. Sel. Math. (N.S.) 8, 523–535 (2002)MathSciNetCrossRefGoogle Scholar
  7. 37.
    V.M. Buchstaber, E.G. Rees, Rings of continuous functions, symmetric products and Frobenius Algebras. Russ. Math. Surv. 59, 125–144 (2004)MathSciNetCrossRefGoogle Scholar
  8. 69.
    C.W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras. American Mathematical Society, 1962 (Chelsea Publishing, White River Junction, 2006)Google Scholar
  9. 81.
    M. Deuring, Algebren (Springer, Berlin 1935, 1968)Google Scholar
  10. 108.
    G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen I (Sitzungsber. Preuss. Akad. Wiss. Berlin, 1897), pp. 994–1015; Ges Abh. III, pp. 82–103Google Scholar
  11. 131.
    A.È. Guterman, Transformations of nonnegative integer-valued matrices that preserve the determinant (Russian). Uspekhi Mat. Nauk 58(6), 147–148 (2003); translation in Russian Math. Surveys 58(6), 1200–1201 (2003)Google Scholar
  12. 132.
    A.È. Guterman, A.V. Mikhalëv, General algebra and linear mappings that preserve matrix invariants (Russian). Fundam. Prikl. Mat. 9(1), 83–101 (2003); translation in J. Math. Sci. N.Y. 128(6), 3384–3395 (2005)Google Scholar
  13. 141.
    H. Helling, Eine Kennzeichnung von Charakteren auf Gruppen und assoziativen Algebren. Commun. Algebra 1, 491–501 (1974)MathSciNetCrossRefGoogle Scholar
  14. 143.
    H.-J, Hoehnke, Konstruktive Methoden in der Theorie der Algebren. I, vol. 2 (Monatsb. Deutsch. Akad. Wiss. Berlin, 1960), pp. 138–46Google Scholar
  15. 144.
    H.-J. Hoehnke, Uber Beziehungen zwischen Probleme von H. Brandt aus der Theorie der Algebren und den Automorphismen der Normenform. Math. Nachr. 34, 229–255 (1967)MathSciNetzbMATHGoogle Scholar
  16. 145.
    H.-J. Hoehnke, Spatial matrix systems and their theories. A contribution to bilinear algebra, in Proceedings of the Second International Symposium, n-Ary Structures (Varna, 1983) (Center for Applied Mathematics, Sofia, 1985), pp. 109–170Google Scholar
  17. 146.
    H.-J. Hoehnke, Einheit von Strukturtheorie der Algebren und Formentheorie. Preprint (unpublished)Google Scholar
  18. 149.
    H.-J. Hoehnke, K.W. Johnson, k-characters and group invariants. Commun. Algebra 26, 1–27 (1998)MathSciNetCrossRefGoogle Scholar
  19. 164.
    N. Jacobson, The Theory of Rings (American Mathematical Society, New York, 1943)CrossRefGoogle Scholar
  20. 165.
    N. Jacobson, Some applications of Jordan forms to involutorial simple associative algebras. Adv. Math. 48, 149–165 (1983)CrossRefGoogle Scholar
  21. 172.
    K.W. Johnson, E. Poimenidou, A formal power series attached to a class function on a group and its application to the characterisation of characters. Math. Proc. Camb. Philos. Soc. 155, 465–474 (2013)MathSciNetCrossRefGoogle Scholar
  22. 192.
    H.M. Khudaverdian, T.T. Voronov, A short proof of the Buchstaber-Rees theorem. Philos. Trans. R. Soc. London, Ser. A 369, 1334–1345 (2011)MathSciNetCrossRefGoogle Scholar
  23. 196.
    F. Klein, Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree (Dover, New York, 2003)Google Scholar
  24. 244.
    M. Roitman, A complete set of invariants for finite groups. Adv. Math. 41, 301–311 (1981)MathSciNetCrossRefGoogle Scholar
  25. 275.
    R.L. Taylor, Galois representations associated to Siegel modular forms of low weight. Duke Math. J. 63, 281–332 (1991)MathSciNetCrossRefGoogle Scholar
  26. 282.
    B.L. van der Waerden, Algebra I and II (Springer, New York, 2003)Google Scholar
  27. 298.
    D. Zipliess, Dividierte Potenzen, Determinanten und die Algebra der verallgemeinerten Spurpolynome. Dissertation, University of Düsseldorf, 1983zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kenneth W. Johnson
    • 1
  1. 1.Department of MathematicsPennsylvania State UniversityAbingtonUSA

Personalised recommendations