Multiplicative Forms on Algebras and the Group Determinant

  • Kenneth W. Johnson
Part of the Lecture Notes in Mathematics book series (LNM, volume 2233)


The ideas in the initial papers by Frobenius on characters and group determinants are set out and put into context. It is indicated how the theory goes back to the search for “sums of squares identities”, the construction of “hypercomplex numbers” and the investigation of quadratic forms. The underlying objects, the group matrix, and its determinant, the group determinant, are introduced. It is shown that group matrices can be constructed as block circulants. The first construction by Frobenius of group characters for noncommutative groups is explained. This led to his construction of the irreducible factors of the group determinant. The k-characters, used to construct the irreducible factor corresponding to an irreducible character, are defined. Resulting developments are then discussed, with an indication of how the ideas of Frobenius were taken up by other mathematicians and how his approach and its continuation in the theory of norm forms on algebras have been useful. A summary of the various ways in which the work has impacted current areas is included.


  1. 8.
    J. Baez, The octonions. Bull. Am. Math Soc. 39, 145–205 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 15.
    A. Bergmann, Formen auf Moduln über kommutativen Ringen beliebiger Charakteristik. J. Reine Angew. Math. 219, 113–156 (1965)MathSciNetzbMATHGoogle Scholar
  3. 17.
    A. Bergmann, Reduzierte Normen und Theorie von Algebren, in Algebra-Tagung Halle 1986, Tagungsband Wiss (Beiträge Halle (Saale) 1987/33 (M48) 1987), pp. 29–57Google Scholar
  4. 18.
    M. Bhargava, Higher composition laws I: a new view on Gauss composition, and quadratic generalizations. Ann. Math. 159, 217–250 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 22.
    M. Bocher, Introduction to Higher Algebra (Dover, New York, 2004)Google Scholar
  6. 24.
    R. Bott, R.J. Milnor, On the parallelizability of the spheres. Bull. Am. Math. Soc. 64, 87–89 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 25.
    N. Bourbaki, Algebra I (Springer, Berlin, 1970)Google Scholar
  8. 26.
    H. Brandt, Der Kompositionsbegriff bei den quaterniären quadratischen Formen. Math. Ann 91, 300–315 (1924)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 27.
    H. Brandt, Über die Komponierbarheit der quaterniären quadratischen Formen. Math. Ann. 94, 179–197 (1925)MathSciNetCrossRefGoogle Scholar
  10. 36.
    V.M. Buchstaber, E.G. Rees, The Gel’fand map and symmetric products. Sel. Math. (N.S.) 8, 523–535 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 37.
    V.M. Buchstaber, E.G. Rees, Rings of continuous functions, symmetric products and Frobenius Algebras. Russ. Math. Surv. 59, 125–144 (2004)MathSciNetCrossRefGoogle Scholar
  12. 38.
    V.M. Buchstaber, E.G. Rees, Frobenius n-homomorphisms, transfers and branched coverings. Math. Proc. Camb. Philos. Soc. 144, 1–12 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 62.
    M.J. Collins, Modular analogues of Brauer’s characterisation of characters. J. Algebra 366, 35–41 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 64.
    J.H. Conway, D.A. Smith, On Quaternions and Octonians (A. K. Peters, Natick, 2003)Google Scholar
  15. 66.
    D. Cooper, G.S. Walsh, Three-manifolds, virtual homology, and group determinants. Geom. Topol. 10, 2247–2269 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 68.
    C.W. Curtis, Pioneers of Representation Theory (American Mathematical Society, Providence, 1999)zbMATHGoogle Scholar
  17. 69.
    C.W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras. American Mathematical Society, 1962 (Chelsea Publishing, White River Junction, 2006)Google Scholar
  18. 72.
    P.J. Davis, Circulant Matrices (Chelsea, New York, 1994)zbMATHGoogle Scholar
  19. 79.
    C. Deninger, On the analogue of the formula of Chowla and Selberg for real quadratic fields. J. Reine Angew. Math. 351, 171–191 (1984)MathSciNetzbMATHGoogle Scholar
  20. 82.
    P. Diaconis, Group Representations in Probability and Statistics (Institute of Mathematical Statistics, Hayward, 1988)Google Scholar
  21. 83.
    P. Diaconis, Patterned matrices. Matrix theory and applications (Phoenix, AZ, 1989), in Proceedings of Symposia in Applied Mathematics, vol. 40 (American Mathematical Society, Providence, RI, 1990), pp. 37–58Google Scholar
  22. 89.
    L.E. Dickson, On the group defined for any given field by the multiplication table of any given finite group. Trans. Am. Math. Soc. 3, 285–301 (1902)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 90.
    L.E. Dickson, An elementary exposition of Frobenius’s theory of group-characters and group-determinants. Ann. Math. 4(2), 25–49 (1902)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 91.
    L.E. Dickson, Modular theory of group matrices. Trans. Am. Math. Soc. 8, 389–398 (1907)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 92.
    L.E. Dickson, Modular theory of group characters. Bull. Am. Math. Soc 13, 477–499 (1907)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 93.
    L.E. Dickson, On quaternions and their generalization and the history of the eight square theorem. Ann. Math. 20(2) , 155–171 (1919)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 95.
    J. Dieudonné, Schur functions and group representations. Astérisque 87–88, 7–19 (1981)MathSciNetzbMATHGoogle Scholar
  28. 96.
    P.G.L. Dirichlet, Lectures on Number Theory, (Supplements by R. Dedekind). History of Mathematics, vol. 16 (American Mathematical Society, Providence, 1999)Google Scholar
  29. 100.
    E. Formanek, D. Sibley, The group determinant determines the group. Proc. Am. Math. Soc. 112, 649–656 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 106.
    G. Frobenius, Über Gruppencharaktere (Sitzungsber. Preuss. Akad. Wiss, Berlin, 1896), pp. 985–1021; Ges Abh. III, pp. 1–37Google Scholar
  31. 107.
    G. Frobenius, Über die Primfactoren der Gruppendeterminante (Sitzungsber Preuss. Akad. Wiss. Berlin, 1896), pp. 1343–1382; Ges Abh. III, pp. 38–77Google Scholar
  32. 112.
    W. Fulton, J. Harris, Representation Theory: A First Course. Graduate Texts in Mathematics, vol. 129 (Springer, New York, 1991) (Lecture 6)Google Scholar
  33. 114.
    P.X. Gallagher, Invariants for finite groups. Adv. Math. 34, 46–57 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 119.
    I.M. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants (Birkhäuser, Boston 1994)zbMATHCrossRefGoogle Scholar
  35. 135.
    T. Hawkins, The origins of the theory of group characters. Arch. History Exact Sci. 7, 142–170 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 137.
    T. Hawkins, New light on Frobenius’ creation of the theory of group characters. Arch. History Exact Sci. 12, 17–243 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 138.
    T. Hawkins, Emergence of the theory of Lie groups, in An Essay in the History of Mathematics 1869–1926. Sources and Studies in the History of Mathematics and Physical Sciences (Springer, New York, 2000)Google Scholar
  38. 139.
    T. Hawkins, The Mathematics of Frobenius in Context (Springer, New York, 2013)zbMATHCrossRefGoogle Scholar
  39. 147.
    H.-J. Hoehnke, K.W. Johnson, The 1-,2-, and 3-characters determine a group. Bull. Am. Math. Soc. 27, 243–245 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 148.
    H.-J. Hoehnke, K.W. Johnson, The 3-characters are sufficient for the group determinant, in Proceedings of the Second International Conference on Algebra. Contemporary Mathematics, vol. 184 (1995), pp. 193–206Google Scholar
  41. 149.
    H.-J. Hoehnke, K.W. Johnson, k-characters and group invariants. Commun. Algebra 26, 1–27 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 150.
    S.P. Humphries, Cogrowth of groups and the Dedekind-Frobenius group determinant. Math. Proc. Camb. Philos. Soc. 121, 193–217 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 154.
    S.P. Humphries, E.L. (Turner) Rode, Weak Cayley tables and generalized centralizer rings of finite groups. Math. Proc. Camb. Philos. Soc. 153, 281–318 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 159.
    T. Hurley, Group rings and rings of matrices. Int. J. Pure Appl. Math. 31, 319–335 (2006)MathSciNetzbMATHGoogle Scholar
  45. 160.
    T. Hurley, Convolutional codes from units in matrix and group rings. Int. J. Pure Appl. Math. 50, 431–463 (2009)MathSciNetzbMATHGoogle Scholar
  46. 161.
    T. Hurley, I. McLoughlin, A group ring construction of the extended binary Golay code. IEEE Trans. Inform. Theory 54, 4381–4383 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 162.
    I.M. Isaacs, Character Theory of Finite Groups (Academic, New York, 1976)zbMATHGoogle Scholar
  48. 168.
    K.W. Johnson, Latin square determinants, in Algebraic, Extremal and Metric Combinatorics 1986. London Mathematical Society Lecture Notes Series, vol. 131 (1988), pp. 146–154Google Scholar
  49. 169.
    K.W. Johnson, On the group determinant. Math. Proc. Camb. Philos. Soc. 109, 299–311 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 171.
    K.W. Johnson, The Dedekind-Frobenius group determinant, new life in an old method, in Proceedings, Groups St Andrews 97 in Bath, II. London Mathematical Society Lecture Notes Series, vol. 261, (1999), pp. 417–428Google Scholar
  51. 173.
    K.W. Johnson, S.K. Sehgal, The 2-character table is not sufficient to determine a group. Proc. Am. Math. Soc. 119, 1021–1027 (1993)zbMATHGoogle Scholar
  52. 174.
    K.W. Johnson, S.K. Sehgal, The 2-characters of a group and the group determinant. Eur. J. Comb. 16, 623–631 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 175.
    K.W. Johnson, J.D.H. Smith, Characters of finite quasigroups. Eur. J. Comb. 5, 43–50 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 180.
    K.W. Johnson, J.D.H. Smith, On the category of weak Cayley table morphisms between groups. Sel. Math. (N.S.) 13, 57–67 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 182.
    K.W. Johnson, P. Vojtěchovský, Right division in groups, Dedekind-Frobenius group matrices, and Ward quasigroups. Abh. Math. Semin. Univ. Hambg. 75, 121–136 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 184.
    K.W. Johnson, S. Mattarei, S.K. Sehgal, Weak Cayley tables. J. Lond. Math. Soc. 61, 395–411 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 186.
    I.L. Kantor, A.S. Sodolodnikov, Hypercomplex Numbers (Springer, Berlin, 1989)CrossRefGoogle Scholar
  58. 191.
    M. Kervaire, On the parallelizability of the spheres. Proc. Nat. Acad. Sci. U.S.A. 44, 280–283 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 192.
    H.M. Khudaverdian, T.T. Voronov, A short proof of the Buchstaber-Rees theorem. Philos. Trans. R. Soc. London, Ser. A 369, 1334–1345 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 194.
    W. Kimmerle, K.W. Roggenkamp, Non-isomorphic groups with isomorphic spectral tables and Burnside matrices. Chin. Ann. Math. Ser. B 15, 273–282 (1994)MathSciNetzbMATHGoogle Scholar
  61. 198.
    M.A. Knus, Quadratic forms, in Clifford Algebras and Spinors. Seminars in Mathematics, vol. 1 (Departamento de Matemática, University Campinas, Campinas, 1988)Google Scholar
  62. 200.
    S. Lang, in Cyclotomic Fields I and II. Combined, 2nd edn. Graduate Texts in Mathematics, vol. 121 (Springer, New York, 1990)zbMATHCrossRefGoogle Scholar
  63. 202.
    P.G. Lejeune Dirichlet, Lectures on Number Theory (American Mathematical Society, Providence, 1999)zbMATHCrossRefGoogle Scholar
  64. 209.
    G.W. Mackey, The Scope and History of Commutative and Noncommutative Harmonic Analysis. History of Mathematics, vol. 5 (American Mathematical Society, Providence; London Mathematical Society, London, 1992)Google Scholar
  65. 212.
    R. Mansfield, A group determinant determines its group. Proc Am. Math. Soc 116, 939–941 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 213.
    J. McKay, D. Sibley, Brauer pairs with the same 2-characters. PreprintGoogle Scholar
  67. 228.
    S. Okubo, Introduction to Octonian and Other Non-associative Algebras in Physics (Cambridge University Press, Cambridge, 1995)zbMATHCrossRefGoogle Scholar
  68. 231.
    A. Pfister, Zur Darstellung von − 1 als Summe von Quadraten in einem Körper. J. Lond. Math. Soc. 40, 159–165 (1965)zbMATHCrossRefGoogle Scholar
  69. 232.
    A. Pfister, Multiplikative quadratische Formen. Arch. Math. 16, 363–370 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 233.
    H. Poincaré, Sur les nombres complexes. Comptes Rendues Acad. Sci. Paris 99, 740–742 (1884), Oeuvres 5, 77–79Google Scholar
  71. 234.
    H. Poincaré, Sur l’intégration des équations linéaires et les périodes des intégrales abéliennes. J. des Math. Pures Appl. 9(5), 139–212 (1903), Oeuvres 3, 106–166Google Scholar
  72. 241.
    D.St.P. Richards, Algebraic methods toward higher order probability inequalities II. Ann. Probab. 32, 1509–1544 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 244.
    M. Roitman, A complete set of invariants for finite groups. Adv. Math. 41, 301–311 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 249.
    S. Sahi, Higher correlation inequalities. Combinatorica 28, 209–227 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 252.
    I. Schur, Neuer Begründung der Theorie der Gruppencharaktere (Sitzungsber. Akad. Wiss, Berlin, 1905), pp. 406–432; Ges. Abh I, 143–169Google Scholar
  76. 256.
    W.R. Scott, Half homomorphisms of groups. Proc. Am. Math. Soc. 8, 1141–1144 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 258.
    J.A. Sjogren, Connectivity and spectrum in a graph with a regular automorphism group of odd order. Internat. J. Algebra Comput. 4, 529–560 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 262.
    J.D.H. Smith, A left loop on the 15-sphere. J. Algebra 176, 128–138 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 263.
    J.D.H. Smith, An Introduction to Quasigroups and Their Representations (Chapman and Hall, London, 2006)CrossRefGoogle Scholar
  80. 266.
    A. Speiser, Gruppendeterminante und Körperdiskriminante. Math. Ann. 77, 546–562 (1916)MathSciNetCrossRefGoogle Scholar
  81. 273.
    O. Taussky, Matrices of rational integers. Bull. Am. Math. Soc. 66, 327–345 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 274.
    O. Taussky, History of sums of squares in algebra. American mathematical heritage: algebra and applied mathematics (El Paso, Tex., 1975/Arlington, Tex., 1976), pp. 73–90, Math. Ser., 13, Texas Tech Univ., Lubbock, Tex., 1981Google Scholar
  83. 275.
    R.L. Taylor, Galois representations associated to Siegel modular forms of low weight. Duke Math. J. 63, 281–332 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 280.
    E. Trachtenberg, Singular value decomposition of Frobenius matrices for approximate and multi-objective signal processing tasks, in SVD and Signal Processing, ed. by E. Deprettere (1988), pp. 331–345Google Scholar
  85. 284.
    M.J. Vazirani, Extending Frobenius’ higher characters. Sci. Math. Jpn. 58, 169–182 (2003)MathSciNetzbMATHGoogle Scholar
  86. 287.
    M. Ward, Postulates for the inverse operations in a group. Trans. Am. Math. Soc. 32, 520–526 (1930)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 288.
    W.C. Waterhouse, Composition of norm-type forms. J. Reine Angew. Math. 353. 85–97 (1984)Google Scholar
  88. 289.
    H. Weber, Theorie der Abel’schen Zahlkörper I, section 3. Acta. Math. Bd 8, 193–263 (1886)CrossRefGoogle Scholar
  89. 290.
    H. Weber, Theorie der Abel’schen Zahlkörper IV, sections 2, 3. Acta. Math. Bd 9, 105–130 (1887)MathSciNetCrossRefGoogle Scholar
  90. 291.
    H. Weber, Lehrbuch der Algebra, vol. III (Chelsea Publishing Company, White River Junction, 1961)Google Scholar
  91. 292.
    B. Weisfeiler, On Construction and Identification of Graphs. Springer Lecture Notes in Mathematics, vol. 558 (Springer, Berlin, 1976)zbMATHCrossRefGoogle Scholar
  92. 296.
    A. Wiles, On ordinary λ-adic representations associated to modular forms. Invent. Math. 94, 529–573 (1988)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kenneth W. Johnson
    • 1
  1. 1.Department of MathematicsPennsylvania State UniversityAbingtonUSA

Personalised recommendations