Advertisement

Coronary Microcirculatory Dysfunction Evaluation in Chronic Angina

  • Maria Dorobantu
  • Lucian Calmac
Chapter

Abstract

Normal coronary arteries or non-obstructive epicardial stenosis are found frequently during evaluation of patients with chronic angina. We present the clinical evaluation of a young female patient with angina and objective proofs of myocardial ischemia with normal appearance of coronary arteries in whom invasive evaluation identified significant alteration of coronary microvascular function. We analyze the significance of invasive tests which are most frequently involved in clinical practice in evaluation of patients with non-obstructive coronary arteries.

Keywords

Ischemia and non-obstructive coronary arteries Microvascular angina Endothelial dysfunction Coronary vasomotor testing Coronary flow reserve Index of microcirculatory resistance 

References

  1. 1.
    Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362:886–95.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and no obstructive coronary artery disease (INOCA). Circulation. 2017;135(11):1075–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Jespersen L, Hvelplund A, Abildstrøm SZ, Pedersen F, Galatius S, Madsen JK, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33(6):734–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Shaw LJ, Merz CNB, Pepine CJ, Reis SE, Bittner V, Kip KE, Health Services and Outcomes Research, et al. The economic burden of angina in women with suspected ischemic heart disease blood institute – sponsored Women’s Ischemia Syndrome Evaluation. Circulation. 2006;114:894–904.PubMedCrossRefGoogle Scholar
  5. 5.
    Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003. Available from http://www.ncbi.nlm.nih.gov/pubmed/23996286.PubMedCrossRefGoogle Scholar
  6. 6.
    Beltrame JF, Crea F, Kaski JC, Ogawa H, Ong P, Sechtem U, et al. International standardization of diagnostic criteria for vasospastic angina. Eur Heart J. 2015;38(33):2565–8.Google Scholar
  7. 7.
    Ong P, Camici PG, Beltrame JF, Crea F, Shimokawa H, Sechtem U, et al. International standardization of diagnostic criteria for microvascular angina. Int J Cardiol. 2018;250:16–20.  https://doi.org/10.1016/j.ijcard.2017.08.068.CrossRefPubMedGoogle Scholar
  8. 8.
    Marinescu MA, Löffler AI, Ouellette M, Smith L, Kramer CM, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc Imaging. 2015;8(2):210–20.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gulati M, Cooper-DeHoff RM, McClure C, Johnson BD, Shaw LJ, Handberg EM, et al. Adverse cardiovascular outcomes in women with nonobstructive coronary artery disease. Arch Intern Med. 2009;169(9):843.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35(17):1101–11. Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4006091&tool=pmcentrez&rendertype=abstract.PubMedCrossRefGoogle Scholar
  11. 11.
    Feher A, Sinusas AJ. Quantitative assessment of coronary microvascular function. Circ Cardiovasc Imaging. 2017;10(8):1–21.CrossRefGoogle Scholar
  12. 12.
    Driessen RS, Raijmakers PG, Stuijfzand WJ, Knaapen P. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging. 2017;33(7):1021–31.  https://doi.org/10.1007/s10554-017-1084-4.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu A, Wijesurendra RS, Liu JM, Greiser A, Jerosch-herold M, Forfar JC, et al. Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary disease. J Am Coll Cardiol. 2018;71(9):957–68.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lichtlen P, Bargheer K, Wenzlaff P. Long-term prognosis of patients with angina- like chest pain and normal coronary angiographic findings. J Am Coll Cardiol. 1995;25:1013–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Kemp H, Kronmal R, Vlietstra R, Frye R. Seven year survival of patients with normal or near normal coronary arteriograms: a CASS registry study. J Am Coll Cardiol. 1986;7:479–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Aziz A, Hansen HS, Sechtem U, Prescott E, Ong P. Sex-related differences in vasomotor function in patients with angina and unobstructed coronary arteries. J Am Coll Cardiol. 2017;70(19):2349–58.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee EM, Choi MH, Seo HS, Kim HK, Kim NH, Choi CU, et al. Impact of vasomotion type on prognosis of coronary artery spasm induced by acetylcholine provocation test of left coronary artery. Atherosclerosis. 2017;257:195–200.  https://doi.org/10.1016/j.atherosclerosis.2016.09.015.CrossRefPubMedGoogle Scholar
  18. 18.
    Halcox JPJ, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, et al. Clinical investigation and reports prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106:653–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Von Mering GO, Arant CB, Wessel TR, Mcgorray SP, Merz CNB, Sharaf BL, et al. Abnormal coronary vasomotion as a prognostic indicator of cardiovascular events in women. Circulation. 2004;109:722–5.CrossRefGoogle Scholar
  20. 20.
    Reriani M, Sara JD, Flammer A, Gulati R, Rihal C, Lennon R, et al. Coronary endothelial function testing provides superior discrimination compared to standard clinical risk scoring in prediction of cardiovascular events. Coron Artery Dis. 2016;27(3):213–20.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Halcox JPJ, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106(6):653–8.PubMedCrossRefGoogle Scholar
  22. 22.
    JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (Coronary Spastic Angina) (JCS 2013). Circ J. 2014;78(11):2779–801.CrossRefGoogle Scholar
  23. 23.
    Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8(11):1445–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Park S, Choi BG, Rha S, Kang TS. The multi-vessel and diffuse coronary spasm is a risk factor for persistent angina in patients received anti-angina medication. Medicine (Baltimore). 2018;97(47):e13288.CrossRefGoogle Scholar
  25. 25.
    Brainin P, Frestad D, Prescott E. The prognostic value of coronary endothelial and microvascular dysfunction in subjects with normal or non-obstructive coronary artery disease: a systematic review and meta-analysis. Int J Cardiol. 2018;254:1–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Beltrame JF, Sasayama S, Maseri A. Racial heterogeneity in coronary artery vasomotor reactivity: differences between Japanese and Caucasian patients. J Am Coll Cardiol. 1999;33(6):1442–52.  https://doi.org/10.1016/S0735-1097(99)00073-X.CrossRefPubMedGoogle Scholar
  27. 27.
    Ong P, Athanasiadis A, Hill S, Vogelsberg H, Voehringer M, Sechtem U. Coronary artery spasm as a frequent cause of acute coronary syndrome: the CASPAR (Coronary Artery Spasm in Patients With Acute Coronary Syndrome). J Am Coll Cardiol. 2008;52(7):523–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Montone RA, Niccoli G, Fracassi F, Russo M, Gurgoglione F, Cammà G, et al. Patients with acute myocardial infarction and non-obstructive coronary arteries: safety and prognostic relevance of invasive coronary provocative tests. Eur Heart J. 2018;39(2):91–8.PubMedGoogle Scholar
  29. 29.
    Ong P, Athanasiadis A, Borgulya G, Voehringer M, Sechtem U. 3-year follow-up of patients with coronary artery spasm as cause of acute coronary syndrome: the CASPAR (coronary artery spasm in patients with acute coronary syndrome) study follow-up. J Am Coll Cardiol. 2011;57(2):147–52.  https://doi.org/10.1016/j.jacc.2010.08.626.CrossRefPubMedGoogle Scholar
  30. 30.
    Echavarría-Pinto M, Van De Hoef TP, Nijjer S, Gonzalo N, Nombela-Franco L, Ibañez B, et al. Influence of the amount of myocardium subtended to a coronary stenosis on the index of microcirculatory resistance. Implications for the invasive assessment of microcirculatory function in ischaemic heart disease. EuroIntervention. 2017;13(8):944–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee JM, Layland J, Jung JH, Lee HJ, Echavarria-Pinto M, Watkins S, et al. Integrated physiologic assessment of ischemic heart disease in real-world practice using index of microcirculatory resistance and fractional flow reserve: insights from the International Index of Microcirculatory Resistance Registry. Circ Cardiovasc Interv. 2015;8(11):e002857.PubMedCrossRefGoogle Scholar
  32. 32.
    Yong AS, Layland J, Fearon WF, Ho M, Shah MG, Daniels D, et al. Calculation of the index of microcirculatory resistance without coronary wedge pressure measurement in the presence of epicardial stenosis. JACC Cardiovasc Interv. 2013;6(1):53–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Kobayashi Y, Lee JM, Fearon WF, Lee JH, Nishi T, Choi D-H, et al. Three-vessel assessment of coronary microvascular dysfunction in patients with clinical suspicion of ischemia. Circ Cardiovasc Interv. 2017;10(11):e005445. Available from http://circinterventions.ahajournals.org/lookup/doi/10.1161/CIRCINTERVENTIONS.117.005445.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu A, Wijesurendra RS, Liu JM, Greiser A, Jerosch-herold M, Forfar JC, et al. Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary disease. J Am Coll Cardiol. 2018;71(9):857–68.Google Scholar
  35. 35.
    Luo C, Long M, Hu X, Huang Z, Hu C, Gao X, et al. Thermodilution-derived coronary microvascular resistance and flow reserve in patients with cardiac syndrome X. Circ Cardiovasc Interv. 2014;7(1):43–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974;34(1):48–55.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee JM, Jung JH, Hwang D, Park J, Fan Y, Na SH, et al. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J Am Coll Cardiol. 2016;67(10):1158–69.PubMedCrossRefGoogle Scholar
  38. 38.
    Van De Hoef TP, Van Lavieren MA, Damman P, Delewi R, Piek MA, Chamuleau SAJ, et al. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv. 2014;7(3):301–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Ahn J-M, Zimmermann FM, Johnson NP, Shin E-S, Koo B-K, Lee PH, et al. Fractional flow reserve and pressure-bounded coronary flow reserve to predict outcomes in coronary artery disease. Eur Heart J. 2017;38(25):1980–9.  https://doi.org/10.1093/eurheartj/ehx139.CrossRefPubMedGoogle Scholar
  40. 40.
    Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia: results from the NHLBI Women’s Ischemia Syndrome Evaluation (WISE) study. J Am Coll Cardiol. 2010;55(25):2825–32.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    De Bruyne B, Oldroyd KG, Pijls NHJ. Microvascular (dys)function and clinical outcome in stable coronary disease. J Am Coll Cardiol. 2016;67(10):1170–2.PubMedCrossRefGoogle Scholar
  42. 42.
    Tambe AA, Demany MA, Zimmerman HA, Mascarenhas E. Angina pectoris and slow flow velocity of dye in coronary arteries: a new angiographic finding. Am Heart J. 1972;84:66–71.PubMedCrossRefGoogle Scholar
  43. 43.
    Beltrame J, Ganz P. The coronary slow flow phenomenon – a new coronary microvascular disorder. Cardiology. 2002;97:197–202.PubMedCrossRefGoogle Scholar
  44. 44.
    Hawkins BM, Stavrakis S, Rousan TA, Abu-Fadel M, Eliot S. Coronary slow flow – prevalence and clinical correlations. Circ J. 2012;76:936–42.PubMedCrossRefGoogle Scholar
  45. 45.
    Alvarez C, Siu H. Coronary slow-flow phenomenon as an under recognized and treatable source of chest pain: case series and literature review. J Investig Med High Impact Case Rep. 2018;6:2324709618789194. Available from file:///pubmed/30038914.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Gori T. Coronary slow flow in a patient with myocarditis. In: Gori T, Fineschi M, editors. Atlas of FFR-guided percutaneous coronary interventions. Cham: Springer; 2016. p. 183–5.CrossRefGoogle Scholar
  47. 47.
    Beltrame JF, Turner SP, Leslie SL, Solomon P, Freedman SB, Horowitz JD. The angiographic and clinical benefits of mibefradil in the coronary slow flow phenomenon. J Am Coll Cardiol. 2004;44(1):57–62.  https://doi.org/10.1016/j.jacc.2004.03.055.CrossRefPubMedGoogle Scholar
  48. 48.
    Yilmaz H, Demir I, Uyar Z. Clinical and coronary angiographic characteristics of patients with coronary slow flow. Acta Cardiol. 2008;63(5):579–84.  https://doi.org/10.2143/AC.63.5.2033224.CrossRefPubMedGoogle Scholar
  49. 49.
    Sezgin AT, Sigirci A, Barutcu I, Topal E, Sezgin N, Ozdemir R, Yetkin E, Tandogan I, Kosar F, Ermis N, Yologlu S, Bariskaner ECS. Vascular endothelial function in patients with slow coronary flow. Coron Artery Dis. 2003;14(2):155–61.PubMedCrossRefGoogle Scholar
  50. 50.
    Tiryakioglu S, Tiryakioglu O, Ari H, Basel MC, Bozat T. Effects of nebivolol on endothelial function and exercise parameters in patients with slow coronary flow. Clin Med Cardiol. 2009;3:115–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Fineschi M, Bravi A, Gori T. The “slow coronary flow” phenomenon: evidence of preserved coronary flow reserve despite increased resting microvascular resistances. Int J Cardiol. 2008;127(3):358–61.PubMedCrossRefGoogle Scholar
  52. 52.
    Manginas A, Gatzov P, Chasikidis C, Voudris V, Pavlides G, Cokkinos DV. Estimation of coronary flow reserve using the Thrombolysis In Myocardial Infarction (TIMI) frame count method. Am J Cardiol. 1999;83(11):1562–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Mangieri E, et al. Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries. Cathet Cardiovasc Diagn. 1996;37:375–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Li L, Gu Y, Liu T, Bai Y, Hou L, Cheng Z, et al. A randomized, single-center double-blinded trial on the effects of diltiazem sustained-release capsules in patients with coronary slow flow phenomenon at 6-month follow-up. PLoS One. 2012;7(6):1–5.Google Scholar
  55. 55.
    Kurtoglu N, Akcay A, Dindar I. Usefulness of oral dipyridamole therapy for angiographic slow coronary artery flow. Am J Cardiol. 2001;87(6):777–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Izzo P, Macchi A, de Gennaro L, Gaglione A, Di Biase M, Brunetti ND. Recurrent angina after coronary angioplasty: mechanisms, diagnostic and therapeutic options. Eur Hear J Acute Cardiovasc Care. 2012;1(2):158–69.CrossRefGoogle Scholar
  57. 57.
    Jabs A, Hink U, Fineschi M, Münzel T, Gori T. How should I treat a patient with typical angina, typical angiography, negative FFR? EuroIntervention. 2013;9(1):157–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Van Lavieren MA, Van De Hoef TP, Sjauw KD, Piek JJ. How should I treat a patient with refractory angina and a single stenosis with normal FFR but abnormal CFR? EuroIntervention. 2015;11(1):125–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Van De Hoef TP, Nolte F, Echavarría-Pinto M, Van Lavieren MA, Damman P, Chamuleau SAJ, et al. Impact of hyperaemic microvascular resistance on fractional flow reserve measurements in patients with stable coronary artery disease: insights from combined stenosis and microvascular resistance assessment. Heart. 2014;100(12):951–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries: the ACOVA study (abnormal coronary vasomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol. 2012;59(7):655–62. Available from:.  https://doi.org/10.1016/j.jacc.2011.11.015.CrossRefPubMedGoogle Scholar
  61. 61.
    Bory M, Pierron F, Panagides D, Bonnet JL, Yvorra S, Desfossez L. Coronary artery spasm in patients with normal or near normal coronary arteries. Eur Heart J. 1996;17:1015–21.PubMedCrossRefGoogle Scholar
  62. 62.
    Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, et al. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36(45):3134–46.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maria Dorobantu
    • 1
    • 2
  • Lucian Calmac
    • 1
  1. 1.Emergency Clinical Hospital BucharestBucharestRomania
  2. 2.University of Medicine and Pharmacy Carol DavilaBucharestRomania

Personalised recommendations