Role of Coronary Microcirculation in No-Reflow Phenomenon in Myocardial Infarction with ST Segment Elevation

  • Z. Vasiljevic-PokrajcicEmail author
  • D. Trifunovic
  • G. Krljanac
  • M. Zdravkovic


The principal cause of myocardial infarction with ST segment elevation (STEMI) is thrombotic occlusion of the (epicardial) coronary artery, leading to the ischaemic myocardial necrosis. The concept of “full reperfusion” encompasses not only sufficient blood flow through epicardial coronary arteries, but also through coronary microcirculation. No-reflow, defined as low or no distal perfusion despite the removal of epicardial occlusion. The cause of this phenomena is complex and multifactorial with functional and anatomical microvascular obstruction as the common pathophysiological background. No-reflow significantly increases infarct size, LV remodelling, leading to heart failure and overall poor clinical outcomes. We present a case report of typical patient with no-reflow and summarize contemporary knowledge regarding its basic pathophysiology, clinical presentation, invasive and non-invasive diagnostic modalities, clinical consequences and basic therapeutic strategies.


Myocardial infarction with ST segment elevation No-reflow Primary percutaneous intervention 


  1. 1.
    Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010;362:2155–65.PubMedCrossRefGoogle Scholar
  2. 2.
    Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, ESC Scientific Document Group, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.CrossRefGoogle Scholar
  3. 3.
    Radovanovic D, Erne P. AMIS plus: Swiss registry of acute coronary syndrome. Heart. 2010;96:917–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Menees DS, Peterson ED, Wang Y, Curtis JP, Messenger JC, Rumsfeld JS, et al. Door-to-balloon time and mortality among patients undergoing primary PCI. N Engl J Med. 2013;369:901–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Stone GW, Selker HP, Thiele H, Patel MR, Udelson JE, Ohman EM, et al. Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials. J Am Coll Cardiol. 2016;67(14):1674–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65(14):1454–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Niccoli G, Scalone G, Lerman A, Crea F. Coronary microvascular obstruction in acute myocardial infarction. Eur Heart J. 2016;37(13):1024–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Niccoli G, Kharbanda RK, Crea F, Banning AP. No-reflow: again prevention is better than treatment. Eur Heart J. 2010;31:2449–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Reffelmann T, Kloner RA. The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion. Basic Res Cardiol. 2006;101:359–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Bekkers SC, Yazdani SK, Virmani R, Waltenberger J. Microvascular obstruction: underlying pathophysiology and clinical diagnosis. J Am Coll Cardiol. 2010;55:1649–60.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Frohlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ. Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J. 2013;34:1714–22.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Robbers LF, Eerenberg ES, Teunissen PF, Jansen MF, Hollander MR, Horrevoets AJ, et al. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur Heart J. 2013;34:2346–53.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Heusch G, Kleinbongard P, Bose D, Levkau B, Haude M, Schulz R, et al. Coronary microembolization: from bedside to bench and back to bedside. Circulation. 2009;120:1822–36.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Niccoli G, Burzotta F, Galiuto L, Crea F. Myocardial no-reflow in humans. J Am Coll Cardiol. 2009;54:281–92.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Niccoli G, Cosentino N, Spaziani C, Fracassi F, Tarantini G, Crea F. No-reflow: incidence and detection in the cath-lab. Curr Pharm Des. 2013;19:4564–75.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Guerra E, Hadamitzky M, Ndrepepa G, Bauer C, Ibrahim T, Ott I, et al. Microvascular obstruction in patients with non-ST-elevation myocardial infarction: a contrast-enhanced cardiac magnetic resonance study. Int J Cardiovasc Imaging. 2014;30:1087–95.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gibson CM, Cannon CP, Murphy SA, Marble SJ, Barron HV, Braunwald E. Relationship of the TIMI myocardial perfusion grades, flow grades, frame count, and percutaneous coronary intervention to long-term outcomes after thrombolytic administration in acute myocardial infarction. Circulation. 2002;105:1909–13.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Van’t Hof AW, Liem A, Suryapranata H, Hoorntje JC, de Boer MJ, Zijlstra F. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle Myocardial Infarction Study Group. Circulation. 1998;97:2302–6.CrossRefGoogle Scholar
  19. 19.
    De Waha S, Patel MR, Granger CB, Ohman ME, Maehara A, Eitel I, et al. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur Heart J. 2017;38:3502–10.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Yamamuro A, Akasaka T, Tamita K, Yamabe K, Katayama M, Takagi T, et al. Coronary flow velocity pattern immediately after percutaneous coronary intervention as a predictor of complications and in-hospital survival after acute myocardial infarction. Circulation. 2002;106:3051–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Bulluck H, Foin N, Cabrera-Fuentes HA, Yeo KK, Wong AS, Fam JM, et al. Index of microvascular resistance and microvascular obstruction in patients with acute myocardial infarction. JACC Cardiovasc Interv. 2016;9(20):2172–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Bajrangee A, Collison D, Oldroyd KG. Resistance to flow in the coronary microcirculation: we can measure it but what does it mean? EuroIntervention. 2017;13:901–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Fearon WF, Shah M, Ng M, Brinton T, Wilson A, Tremmel JA, et al. Predictive value of the index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2008;51:560–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Carrick D, Haig C, Ahmed N, et al. Comparative prognostic utility of indexes of microvascular function alone or in combination in patients with an acute ST-segment-elevation myocardial infarction. Circulation. 2016;134:1833–47.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Payne AR, Berry C, Doolin O, et al. Microvascular resistance predicts myocardial salvage and infarct characteristics in ST-elevation myocardial infarction. J Am Heart Assoc. 2012;1:e002246.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    De Maria GL, Alkhalil M, Wolfrum M, Fahrni G, Borlotti A, Gaughran L, et al. Index of microcirculatory resistance as a tool to characterize microvascular obstruction and to predict infarct size regression in patients with STEMI undergoing primary PCI. JACC Cardiovasc Imaging. 2019;12(5):837–48.PubMedCrossRefGoogle Scholar
  27. 27.
    Williams RP, de Waard GA, De Silva K, Lumley M, Asrress K, Arri S, et al. Doppler versus thermodilution-derived coronary microvascular resistance to predict coronary microvascular dysfunction in patients with acute myocardial infarction or stable angina pectoris. Am J Cardiol. 2018;121(1):1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Infusino F, Niccoli G, Fracassi F, Roberto M, Falcioni E, Lanza GA, et al. The central role of conventional 12-lead ECG for the assessment of microvascular obstruction after percutaneous myocardial revascularization. J Electrocardiol. 2014;47:45–51.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ito H, Tomooka T, Sakaii N, et al. Lack of myocardial perfusion. Immediately after successful thrombolysis: a predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation. 1992;85:1699–705.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lepper W, Hoffmann R, Kamp O, et al. Assessment of myocardial reperfusion by intravenous myocardial contrast echocardiography and coronary flow reserve after primary percutaneous transluminal coronary angiography in patients with acute myocardial infarction. Circulation. 2000;101:2368–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Main ML, Magalski A, Chee NK, et al. Full-motion pulse inversion power Doppler contrast echocardiography differentiates stunning from necrosis and predicts recovery of left ventricular function after acute myocardial infarction. J Am Coll Cardiol. 2001;38:1390–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Korosoglou G, Labadze N, Giannitsis E, et al. Usefulness of realtime myocardial perfusion imaging to evaluate tissue level reperfusion in patients with non ST elevation myocardial infarction. Am J Cardiol. 2005;95:1033–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Janardhanan R, Moon JC, Pennell DJ, Senior R. Myocardial contrast echocardiography accurately reflects transmurality of myocardial necrosis and predicts contractile reserve after acute myocardial infarction. Am Heart J. 2005;149:355–62.PubMedCrossRefGoogle Scholar
  34. 34.
    Galiuto L, Garramone B, Scara A, et al. The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling. J Am Coll Cardiol. 2008;51:552–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Choi EY, Seo HS, Park S, et al. Prediction of transmural extent of infarction with contrast echocardiographically derived index of myocardial blood flow and myocardial blood volume fraction: comparison with contrast-enhanced magnetic resonance imaging. J Am Soc Echocardiogr. 2006;19:1211–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Tesche C, De Cecco CN, Albrecht MH, et al. Coronary CT angiography-derived fractional flow reserve. Radiology. 2017;285(1):17–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Montalescot G, Sechtem U, Achenbach S, Task Force Members, et al. 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J. 2013;34:2949–3003.PubMedCrossRefGoogle Scholar
  38. 38.
    Wu J, Barton D, Xie F, O’Leary E, et al. Comparison of fractional flow reserve assessment with demand stress myocardial contrast echocardiography in angiographically intermediate coronary stenosis. Cir Cardiovasc Imaging. 2016;9:e004129.Google Scholar
  39. 39.
    Jayaweera AR, Wei K, Coggins M, Bin JP, Goodman C, Kaul S. Role of capillaries in determining CBF reserve: new insights using myocardial contrast echocardiography. Am J Phys. 1999;277:H2363–72.Google Scholar
  40. 40.
    Tsutsui JM, Elhendy A, Anderson JR, Xie F, McGrain AC, Porter TR. Prognostic value of dobutamine stress myocardial contrast perfusion echocardiography. Circulation. 2005;112:1444–50.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Gaibazzi N, Reverberi C, Lorenzoni V, Molinaro S, Porter TR. Prognostic value of high-dose dipyridamole stress myocardial contrast perfusion echocardiography. Circulation. 2012;126:1217–24.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kern MJ, Bach RG, Mechem C, Caracciolo EA, et al. Variations in normal coronary vasodilatory reserve stratified by artery, gender, heart transplantation and coronary artery disease. J Am Coll Cardiol. 1996;28:1154–60.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Trifunovic D, Sobic-Saranovic D, Beleslin B, et al. Coronary flow of the infarct artery assessed by transthoracic Doppler after primary percutaneous coronary intervention predicts final infarct size. Int J Cardiovasc Imaging. 2014;30:1509–18.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Bekkers SC, Backes WH, Kim RJ, et al. Detection and characteristics of microvascular obstruction in reperfused acute myocardial infarction using an optimized protocol for contrast-enhanced cardiovascular magnetic resonance imaging. Eur Radiol. 2009;19:2904–12.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mayr A, Klug G, Schocke M, et al. Late microvascular obstruction after acute myocardial infarction: relation with cardiac and inflammatory markers. Int J Cardiol. 2012;157:391–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    O’Regan DP, Ariff B, Neuwirth C, Tan Y, Durighel G, Cook SA. Assessment of severe reperfusion injury with T2∗ cardiac MRI in patients with acute myocardial infarction. Heart. 2010;96:1885–91.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bogaert J, Kalantzi M, Rademakers FE, Dymarkowski S, Janssens S. Determinants and impact of microvascular obstruction in successfully reperfused ST-segment elevation myocardial infarction. Assessment by magnetic resonance imaging. Eur Radiol. 2007;17:2572–80.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Mather AN, Fairbairn TA, Ball SG, Greenwood JP, Plein S. Reperfusion haemorrhage as determined by cardiovascular MRI is a predictor of adverse left ventricular remodelling and markers of late arrhythmic risk. Heart. 2011;97:453–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Wu E, Ortiz JT, Tejedor P, et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart. 2008;94:730–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Asanuma T, Tanabe K, Ochiai K, et al. Relationship between progressive microvascular damage and intramyocardial hemorrhage in patients with reperfused anterior myocardial infarction: myocardial contrast echocardiographic study. Circulation. 1990;96:448–53.CrossRefGoogle Scholar
  51. 51.
    Robbers LF, Eerenberg ES, Teunissen PF, et al. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur Heart J. 2013;34:2346–53.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star (T2∗) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22:2171–9.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kidambi A, et al. The effect of microvascular obstruction and intramyocardial hemorrhage on contractile recovery in reperfused myocardial infarction: insights from cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2013;15:58.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Husser O, et al. Cardiovascular magnetic resonance-derived intramyocardial hemorrhage after STEMI: influence on long-term prognosis, adverse left ventricular remodeling and relationship with microvascular obstruction. Int J Cardiol. 2013;167:2047–54.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Dong-bao L, Qi H, Zhi L, Shan W, Wei-ying J. Predictors and long-term prognosis of angiographic slow/no-reflow phenomenon during emergency percutaneous coronary intervention for ST-elevated acute myocardial infarction. Clin Cardiol. 2010;33(12):E7–E12.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Celik T, Balta S, Ozturk C, et al. Predictors of no-reflow phenomenon in young patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Angiology. 2016;67(7):683–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Ding S, Shi Y, Sun X, Cao Q, Dai H, Guan J. Contrast agent dose and slow/no-reflow in percutaneous coronary interventions: a case-control study of patients with non-ST-segment elevation acute coronary syndromes. Herz. 2019;44(1):69–75.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mirbolouk F, Gholipour M, Salari A, et al. CHA2DS2-VASc score predict no-reflow phenomenon in primary percutaneous coronary intervention. J Cardiovasc Thorac Res. 2018;10(1):46–52.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Aşkın L, Aktürk E. Association between SYNTAX II score and electrocardiographic evidence of no-reflow in patients with ST-segment elevation myocardial infarction. Turk Kardiyol Dern Ars. 2018;46(6):455–63.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Rezkalla SH, Robert A, Kloner RA. No-reflow phenomenon. Circulation. 2002;105:656–62.PubMedCrossRefGoogle Scholar
  61. 61.
    Ndrepepa G, Tiroch K, Fusaro M, Keta D, Seyfarth M, Byrne RA, et al. 5-year prognostic value of no-reflow phenomenon after percutaneous coronary intervention in patients with acute myocardial infarction. J Am Coll Cardiol. 2010;55(21):2383–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Z. Vasiljevic-Pokrajcic
    • 1
    Email author
  • D. Trifunovic
    • 2
  • G. Krljanac
    • 2
  • M. Zdravkovic
    • 3
  1. 1.Faculty of MedicineUniversity of BelgradeBelgradeSerbia
  2. 2.Department of Cardiology, University Clinical Centre of Serbia, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
  3. 3.University Clinical Hospital Centre Bezanijska Kosa, Faculty of MedicineUniversity of BelgradeBelgradeSerbia

Personalised recommendations