Advertisement

Microcirculatory Dysfunction in Acute Heart Failure

  • Ovidiu Chioncel
  • Alexandre Mebazaa
Chapter

Abstract

Several conceptual frameworks have been proposed to explore the underlying pathogenesis of acute heart failure (AHF), and recently emerging evidence has suggested a potential impact of microcirculatory dysfunction. Numerous experimental and clinical studies have reported that microcirculation is altered in patients with AHF and cardiogenic shock (CS), and the extent of micro-vascular abnormalities has been correlated with organ dysfunction and mortality in AHF.

Although, the clinical consequences of macro-circulatory abnormalities, congestion or hypoperfusion, can lead to organ injury and failure of target organs (i.e. heart, lungs, kidneys, liver, intestine, brain), the intermediary link between central hemodynamics and organ failure is represented by microcirculatory dysfunction. Multiple organ failure is common in AHF and CS patients, despite correction of mean arterial pressure and cardiac output. Furthermore, using global hemodynamic markers as target to therapy in AHF may not be sufficient to avoid subsequent organ failure. Direct monitoring of the microcirculation by using currently available techniques, in conjunction with global hemodynamic data can be expected to help in the understanding of the pathophysiology of microcirculatory dysfunction during AHF decompensation.

Although different treatment strategies, including pharmacological interventions and mechanical circulatory support (MCS), may theoretically improve microcirculatory dysfunction, AHF patients may present with distinct clinical condition, varying from hypertensive heart failure to CS, and the severity of microcirculatory alterations and the response to therapy may differ among these clinical conditions. Understanding the time-course of microcirculatory abnormalities during AHF decompensation may assist to guide the therapies, and may help to identify the optimal timing for MCS implant.

Keywords

Acute heart failure Cardiogenic shock Microcirculatory dysfunction Therapies 

Supplementary material

References

  1. 1.
    Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.CrossRefGoogle Scholar
  2. 2.
    Maggioni AP, Dahlstrom U, Filippatos G, et al. EURObservational Research Programme: the Heart Failure Pilot Survey (ESC-HF Pilot). Eur J Heart Fail. 2010;12(10):1076–84.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Chioncel O, Vinereanu D, Datcu M, et al. The Romanian Acute Heart Failure Syndromes (RO-AHFS) registry. Am Heart J. 2011;162(1):142–53 e1.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Chioncel O, Mebazaa A, Harjola VP, et al. Clinical phenotypes and outcome of patients hospitalized for acute heart failure: the ESC Heart Failure Long-Term Registry. Eur J Heart Fail. 2017;19(10):1242–54.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hamo CE, Butler J, Gheorghiade M, Chioncel O. The bumpy road to drug development for acute heart failure. Eur Heart J Suppl. 2016;18(suppl G):G19–32.CrossRefGoogle Scholar
  6. 6.
    Chioncel O, Collins SP, Ambrosy AP, Pang PS, Radu IR, Antohi EA, Masip J, Butler J and Iliescu VA. Therapeutic Advances in the Management of Cardiogenic Shock. Am J Ther. 2019;26(2):e234–47.Google Scholar
  7. 7.
    Thiele H, Ohman EM, Desch S, et al. Management of cardiogenic shock. Eur Heart J. 2015;36(20):1223–30.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    van Diepen S, Katz JN, Albert NM, et al. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation. 2017;136(16):e232–e68.Google Scholar
  9. 9.
    den Uil CA, Klijn E, Lagrand WK, Brugts JJ, Ince C, Spronk PE, Simons ML. The microcirculation in health and critical disease. Prog Cardiovasc Dis. 2008;51(2):161–70.CrossRefGoogle Scholar
  10. 10.
    De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;147(1):91–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Lauten A, Ferrari M, Goebel B, Rademacher W, Schumm J, Uth O, Kiehntopf M, Figulla HR, Jung C. Microvascular tissue perfusion is impaired in acutely decompensated heart failure and improves following standard treatment. Eur J Heart Fail. 2011;13:711–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Lim N, Dubois MJ, De Backer D, et al. Do all non survivors of cardiogenic shock die with a low cardiac index? Chest. 2003;124(5):1885–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000;440(5):653–66.PubMedCrossRefGoogle Scholar
  14. 14.
    Salgado DR, Favory R, De Backer D. Microcirculatory assessment in daily clinical practice – not yet ready but not too far! Einstein. 2010;8(1):107–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Moore JPR, Dyson A, Singer M, Fraser J. Microcirculatory dysfunction and resuscitation: why, when, and how. Br J Anaesth. 2015;115(3):366–75.PubMedCrossRefGoogle Scholar
  16. 16.
    De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010;36:1813–25.PubMedCrossRefGoogle Scholar
  17. 17.
    Hainsworth R. Vascular capacitance: its control and importance. Rev Physiol Biochem Pharmacol. 1986;105:101–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Vallet B. Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med. 2002;30:S229–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Daly CJ, McGrath JC. Previously unsuspected widespread cellular and tissue distribution of β-adrenoceptors and its relevance to drug action. Trends Pharmacol Sci. 2011;32:219–26.PubMedCrossRefGoogle Scholar
  20. 20.
    De Backer D, Donadello K, Taccone FS, Ospina-Tascon G, Salgado D, Vincent JL. Microcirculatory alterations: potential mechanisms and implications for therapy. Ann Intensive Care. 2011;1:27.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Jung C, Ferrari M, Roediger C, Fritzenwanger M, Goebel B, Lauten A, Pfeifer R, Figulla HR. Evaluation of the sublingual microcirculation in cardiogenic shock. Clin Hemorheol Microcirc. 2009;42:141–8.PubMedGoogle Scholar
  22. 22.
    den Uil CA, Lagrand WK, van der Ent M, Jewbali LS, Cheng JM, Spronk PE, Simoons ML. Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2010;31(24):3032–9.CrossRefGoogle Scholar
  23. 23.
    Kirschenbaum LA, Astiz ME, Rackow EC, Saha DC, Lin R. Microvascular response in patients with cardiogenic shock. Crit Care Med. 2000;28:1290–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Katz SD, Khan T, Zeballos GA, et al. Decreased activity of the L -arginine–nitric oxide metabolic pathway in patients with congestive heart failure. Circulation. 1999;99:2113–7.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Harjola VP, Mullens W, Banaszewski M, Bauersachs J, Brunner-La Rocca HP, Chioncel O, Collins SP, Doehner W, Filippatos GS, Flammer AJ, Fuhrmann V, Lainscak M, Lassus J, Legrand M, Masip J, Mueller C, Papp Z, Parissis J, Platz E, Rudiger A, Ruschitzka F, Schäfer A, Seferovic PM, Skouri H, Yilmaz M, Mebazaa A. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail. 2017;19(7):821–36.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    de Backer D, Hollenberg S, Boerma C, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11:R101.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Donati A, Domizi R, Damiani E, Adrario E, Pelaia P, Ince C. From macrohemodynamic to the microcirculation. Crit Care Res Prac. 2013;2013:892710.Google Scholar
  28. 28.
    Gilbert-Kawai E, Coppel J, Bountziouka V, Ince C, Martin D, Caudwell Xtreme Everest and Xtreme Everest 2 Research Groups. A comparison of the quality of image acquisition between the incident dark field and side stream dark field video-microscopes. BMC Med Imaging. 2016;16(1):10.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gomez H, Torres A, Polanco P, Kim HK, Zenker S, Puyana JC, Pinsky MR. Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O2 saturation response. Intensive Care Med. 2008;34:1600–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Levy B, Gawalkiewicz P, Vallet B, Briancon S, Nace L, Bollaert PE. Gastric capnometry with air automated tonometry predicts outcome in critically ill patients. Crit Care Med. 2003;31:474–80.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD, ESC Scientific Document Group. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138:e618–51.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Xue Y, Clopton P, Peacock WF, Maisel AS. Serial changes in high-sensitive troponin I predict outcome in patients with decompensated heart failure. Eur J Heart Fail. 2011;13:37–42.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Greene SJ, Butler J, Fonarow GC, Subacius HP, Ambrosy AP, Vaduganathan M, Triggiani M, Solomon SD, Lewis EF, Maggioni AP, Böhm M, Chioncel O, Nodari S, Senni M, Zannad F, Gheorghiade M. Pre-discharge and early post-discharge troponin elevation among patients hospitalized for heart failure with reduced ejection fraction: findings from the ASTRONAUT trial. Eur J Heart Fail. 2018;20(2):281–91.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Damman K, Valente MA, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35:455–69.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lemley KV, Kriz W. Anatomy of the renal interstitium. Kidney Int. 1991;39:370–81.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, Young JB, Tang WH. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Legrand M, Mebazaa A, Ronco C, Januzzi JL Jr. When cardiac failure, kidney dysfunction, and kidney injury intersect in acute conditions: the case of cardiorenal syndrome. Crit Care Med. 2014;42:2109–17.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Verbrugge FH, Dupont M, Steels P, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013;62:485–95.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Nagatomo Y, Wilson Tang WH. Intersections between microbiome and heart failure: revisiting the gut hypothesis. J Card Fail. 2015;21(12):973–80.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chioncel O, Ambrosy AP. Trimethylamine N-oxide and risk of heart failure progression: marker or mediator of disease. Eur J Heart Fail. 2019;21(7):887–90.Google Scholar
  41. 41.
    Sundaram V, Fang JC. Gastrointestinal and liver issues in heart failure. Circulation. 2016;133:1696–703.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    van Deursen VM, Damman K, Hillege HL, van Beek AP, van Veldhuisen DJ, Voors AA. Abnormal liver function in relation to hemodynamic profile in heart failure patients. J Card Fail. 2010;16:84–90.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Fuhrmann V, Kneidinger N, Herkner H, Heinz G, Nikfardjam M, Bojic A, Schellongowski P, Angermayr B, Kitzberger R, Warszawska J, Holzinger U, Schenk P, Madl C. Hypoxic hepatitis: underlying conditions and risk factors for mortality in critically ill patients. Intensive Care Med. 2009;35:1397–405.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ambrosy AP, Gheorghiade M, Bubenek S, Vinereanu D, Vaduganathan M, Macarie C, Chioncel O, Romanian Acute Heart Failure Syndromes (RO-AHFS) study investigators. The predictive value of transaminases at admission in patients hospitalized for heart failure: findings from the RO-AHFS registry. Eur Heart J Acute Cardiovasc Care. 2013;2(2):99–108.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wan Z, Ristagno G, Sun S, Li Y, Weil MH, Tang W. Preserved cerebral microcirculation during cardiogenic shock. Crit Care Med. 2009;37(8):2333–7.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Chioncel O, Collins SP, Ambrosy AP, Gheorghiade M, Filippatos G. Pulmonary Oedema-therapeutic targets. Card Fail Rev. 2015;1(1):38–45.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hermans C, Bernard A. Lung epithelium-specific proteins: characteristics and potential applications as markers. Am J Respir Crit Care Med. 1999;159:646–78.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Pappas L, Filippatos G. Pulmonary congestion in acute heart failure: from hemodynamics to lung injury and barrier dysfunction. Rev Esp Cardiol. 2011;64(9):735–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Parissis JT, Venetsanou KF, Mentzikof DG, Ziras NG, Kefalas CG, Karas SM. Tumor necrosis factor-alpha serum activity during treatment of acute decompensation of cachectic and non-cachectic patients with advanced congestive heart failure. Scand Cardiovasc J. 1999;33:344–50.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Hogan CJ, Ward KR, Franzen DS, Rajendran B, Thacker LR. Sublingual tissue perfusion improves during emergency treatment of acute decompensated heart failure. Am J Emerg Med. 2012;30:872–80.PubMedCrossRefGoogle Scholar
  51. 51.
    Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet. 2004;364:545–8.PubMedCrossRefGoogle Scholar
  52. 52.
    TRIUMPH Investigators, Alexander JH, Reynolds HR, Stebbins AL, Dzavik V, Harrington RA, Van de Werf F, Hochman JS. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA. 2007;297:1657–66.CrossRefGoogle Scholar
  53. 53.
    Chioncel O, Collins SP, Greene SJ, Ambrosy AP, Vaduganathan M, Macarie C, Butler J, Gheorghiade M. Natriuretic peptide-guided management in heart failure. J Cardiovasc Med (Hagerstown). 2016;17(8):556–68.CrossRefGoogle Scholar
  54. 54.
    den Uil CA, Lagrand WK, Spronk PE, van der Ent M, Jewbali LS, Brugts JJ, Ince C, Simoons ML. Low-dose nitroglycerin improves microcirculation in hospitalized patients with acute heart failure. Eur J Heart Fail. 2009;11:386–90.CrossRefGoogle Scholar
  55. 55.
    den Uil CA, Caliskan K, Lagrand WK, van der Ent M, Jewbali LSD, van Kuijk JP, Spronk PE, Simoons ML. Dose-dependent benefit of nitroglycerin on microcirculation of patients with severe heart failure. Intensive Care Med. 2009;35:1893–9.CrossRefGoogle Scholar
  56. 56.
    Mebazaa A, Motiejunaite J, Gayat E, Crespo-Leiro MG, Lund LH, Maggioni AP, Chioncel O, Akiyama E, Harjola VP, Seferovic P, Laroche C, Julve MS, Roig E, Ruschitzka F, Filippatos G, ESC Heart Failure Long-Term Registry Investigators. Long-term safety of intravenous cardiovascular agents in acute heart failure: results from the European Society of Cardiology Heart Failure Long-Term Registry. Eur J Heart Fail. 2018;20(2):332–41.PubMedCrossRefGoogle Scholar
  57. 57.
    De Backer D, Creteur J, Dubois MJ, et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med. 2006;34:403–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Hernandez G, Bruhn A, Luengo C, Regueira T, Kattan E, Fuentealba A, Florez J, Castro R, Aquevedo A, Pairumani R, McNab P, Ince C. Effects of dobutamine on systemic, regionalvand microcirculatory perfusion parametersvin septic shock: a randomized, placebo v controlled, v double-blind, crossover study. Intensive Care Med. 2013;39:1435–43.PubMedCrossRefGoogle Scholar
  59. 59.
    den Uil CA, Lagrand WK, van der Ent M, Nieman K, Struijs A, Jewbali LS, Constantinescu AA, Spronk PE, Simoons ML. Conventional hemodynamic resuscitation may fail to optimize tissue perfusion: an observational study on the effects of dobutamine, enoximone, and norepinephrine in patients with acute myocardial infarction complicated by cardiogenic shock. PLoS One. 2014;9(8):e103978.CrossRefGoogle Scholar
  60. 60.
    Wimmer R. Effects of levosimendan onmicrocirculation in patients with cardiogenic shock. Circulation. 2008;118:s664–5.Google Scholar
  61. 61.
    Werdan K, Gielen S, Ebelt H, et al. Mechanical circulatory support in cardiogenic shock. Eur Heart J. 2014;35(3):156–67.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19(Suppl 3):S8.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Thiele H, Zeymer U, Neumann FJ, et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial. Lancet. 2013;382(9905):1638–45.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Thiele H, Zeymer U, Neumann FJ, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zheng XY, Wang Y, Chen Y, et al. The effectiveness of intra-aortic balloon pump for myocardial infarction in patients with or without cardiogenic shock: a meta-analysis and systematic review. BMC Cardiovasc Disord. 2016;16(1):148.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ibanez B, James S, Agewall S, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.CrossRefGoogle Scholar
  67. 67.
    Jung C, Lauten A, Rödiger C, et al. Effect of intra-aortic balloon pump support on microcirculation during high-risk percutaneous intervention. Perfusion. 2009;24(6):417–21.PubMedCrossRefGoogle Scholar
  68. 68.
    Den Uil CA, Lagrand WK, Van Der Ent M, et al. The effects of intra-aortic balloon pump support on macrocirculation and tissue microcirculation in patients with cardiogenic shock. Cardiology. 2009;114(1):42–6.CrossRefGoogle Scholar
  69. 69.
    Jung C, Fuernau G, de Waha S, et al. Intraaortic balloon counterpulsation and microcirculation in cardiogenic shock complicating myocardial infarction: an IABP-SHOCK II substudy. Clin Res Cardiol. 2015;104(8):679–87.PubMedCrossRefGoogle Scholar
  70. 70.
    Munsterman LDH, Elbers PWG, Ozdemir A, et al. Withdrawing intra-aortic balloon pump support paradoxically improves microvascular flow. Crit Care. 2010;14(4):R161.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lam K, Sjauw KD, Henriques JP, Ince C, de Mol BA. Improved microcirculation in patients with an acute ST-elevation myocardial infarction treated with the Impella LP2.5 percutaneous left ventricular assist device. Clin Res Cardiol. 2009;98(5):311–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Keebler ME, Haddad EV, Choi CW, et al. Venoarterial extracorporeal membrane oxygenation in cardiogenic shock. JACC Heart Fail. 2018;6(6):503–16.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kara A, Akin S, Dos Reis MD, Struijs A, Caliskan K, van Thiel RJ, Dubois EA, de Wilde W, Zijlstra F, Gommers D, Ince C. Microcirculatory assessment of patients under VA-ECMO. Crit Care. 2016;20(1):344.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Yeh YC, Lee CT, Wang CH, Tu YK, Lai CH, Wang YC, Chao A, Huang CH, Cheng YJ, Chen YS. Investigation of microcirculation in patients with venoarterial extracorporeal membrane oxygenation life support. Crit Care. 2018;22(1):200.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care. 2016;20:387.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Aissaoui N, El-Banayosy A, Combes A. How to wean a patient from veno-arterial extracorporeal membrane oxygenation. Intensive Care Med. 2015;41(5):902–5.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Akin S, Dos Reis Miranda D, Caliskan K, Soliman OI, Guven G, Struijs A, van Thiel RJ, Jewbali LS, Lima A, Gommers D, Zijlstra F, Ince C. Functional evaluation of sublingual microcirculation indicates successful weaning from VA-ECMO in cardiogenic shock. Crit Care. 2017;21(1):265.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Drakos SG, Kfoury AG, Hammond EH, et al. Impact of mechanical unloading on microvasculature and associated central remodeling features of the failing human heart. J Am Coll Cardiol. 2010;56(5):382–91.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sansone R, Stanske B, Keymel S, et al. Macrovascular and microvascular function after implantation of left ventricular assist devices in end-stage heart failure: role of microparticles. J Heart Lung Transplant. 2015;34(7):921–32.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Witman MA, Garten RS, Gifford JR, Groot HJ, Trinity JD, Stehlik J, Nativi JN, Selzman CH, Drakos SG, Richardson RS. Further peripheral vascular dysfunction in heart failure patients with a continuous-flow left ventricular assist device. J Am Coll Cardiol Heart Fail. 2015;3:703–11.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ovidiu Chioncel
    • 1
    • 2
  • Alexandre Mebazaa
    • 3
  1. 1.Emergency Institute for Cardiovascular Diseases “Prof. C.C. Iliescu”BucharestRomania
  2. 2.University of Medicine Carol DavilaBucharestRomania
  3. 3.Université de Paris, Hôpitaux Universitaires Saint Louis Lariboisière, APHP, U 942 Inserm-MASCOT, F-CRIN INI-CRCTParisFrance

Personalised recommendations