Regulation of Antiviral Innate Immunity Through APOBEC Ribonucleoprotein Complexes

  • Jason D. Salter
  • Bogdan Polevoda
  • Ryan P. Bennett
  • Harold C. SmithEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 93)


The DNA mutagenic enzyme known as APOBEC3G (A3G) plays a critical role in innate immunity to Human Immunodeficiency Virus-1 (HIV-1 ). A3G is a zinc-dependent enzyme that mutates select deoxycytidines (dC) to deoxyuridine (dU) through deamination within nascent single stranded DNA (ssDNA) during HIV reverse transcription. This activity requires that the enzyme be delivered to viral replication complexes by redistributing from the cytoplasm of infected cells to budding virions through what appears to be an RNA-dependent process. Once inside infected cells, A3G must bind to nascent ssDNA reverse transcripts for dC to dU base modification gene editing. In this chapter we will discuss data indicating that ssDNA deaminase activity of A3G is regulated by RNA binding to A3G and ribonucleoprotein complex formation along with evidence suggesting that RNA-selective interactions with A3G are temporally and mechanistically important in this process.


A3G AID Antiviral APOBEC Crosslinking Crystal structure Cure Cytidine deaminase DNA Gene editing HIV Hypermutation Innate immunity Mass spectrometry Noncoding RNA Protein RNA interactions Ribonucleoprotein particles RNA RNA binding domains 



Collectively all APOBEC3 proteins, A3A, A3B, A3C, A3D, A3F, A3G, A3H


Activation induced deaminase


Apolipoprotein B editing catalytic unit


N-terminal domain of dual domain APOBEC proteins


C-terminal domain of dual domain APOBEC proteins


Crosslinking immunoprecipitation and sequencing of RNA bound to proteins


HIV genomic RNA


Human immunodeficiency virus


Human Y ncRNA


Nucleocapsid portion of HIV Gag


Noncoding RNA


Ribonucleoprotein particle


Reverse transcriptase


RNA sequencing


Single stranded DNA


Zinc binding domain


  1. Adolf MB, Webb J, Chelico L (2013) Retroviral Restriction Factor APOBEC3G Delays the Initiation of DNA Snythesis by HIV-1 Reverse Transcriptase. PLoS ONE 8:e64196Google Scholar
  2. Aydin H, Taylor MW, Lee JE (2014) Structure-guided analysis of the human APOBEC3-HIV restrictome. Structure 22:668–684CrossRefPubMedGoogle Scholar
  3. Bach D, Peddi S, Mangeat B, Lakkaraju A, Strub K, Trono D (2008) Characterization of APOBEC3G binding to 7SL1 RNA. Retrovirology 5:54CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bennett RP, Stewart RA, Hogan PA, Ptak RG, Mankowski MK, Hartman TL, Buckheit RW Jr, Snyder BA, Salter JD, Morales GA et al (2016) An analog of camptothecin inactive against Topoisomerase I is broadly neutralizing of HIV-1 through inhibition of Vif-dependent APOBEC3G degradation. Antiviral Res 136:51–59CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bennett RP (2007) A functional analysis of the domains of APOBEC3G involved in dimerization, Antiviral activity and cellular localization. University of Rochester School of Medicine and Dentistry, Department of Biochemistry and Biophysics. Ph.D. thesis Chapter 2, pp 48–90. Proquest ID # 304818534Google Scholar
  6. Bohn JA, Thummar K, York A, Raymond A, Brown WC, Bieniasz PD, Hatziioannou T, Smith JL (2017) APOBEC3H structure reveals an unusual mechanism of interaction with duplex RNA. Nat Commun 8:1021CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bulliard Y, Turelli P, Rohrig UF, Zoete V, Mangeat B, Michielin O, Trono D (2009) Functional analysis and structural modeling of human APOBEC3G reveal the role of evolutionarily conserved elements in the inhibition of human immunodeficiency virus type 1 infection and Alu transposition. J Virology 83:12611–12621CrossRefPubMedGoogle Scholar
  8. Burnett A, Spearman P (2007) APOBEC3G multimers are recruited to the plasma membrane for packaging into human immunodeficiency virus type 1 virus-like particles in an RNA-dependent process requiring the NC basic linker. J Virology 81:5000–5013CrossRefPubMedGoogle Scholar
  9. Bélanger K, Langlois MA (2015) RNA-binding residues in the N-terminus of APOBEC3G influence its DNA sequence specificity and retrovirus restriction efficiency. Virology 483:141–148CrossRefPubMedGoogle Scholar
  10. Bélanger K, Savoie M, Rosales Gerpe MC, Couture JF, Langlois MA (2013) Binding of RNA by APOBEC3G controls deamination-independent restriction of retroviruses. Nucleic Acids Res 41:7438–52CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cadena C, Stavrou S, Manzoni T, Iyer SS, Bibollet-Ruche F, Zhang, W, Hahn BH, Browne EP, Ross SR (2016) The effect of HIV-1 Vif polymorphisms on A3G anti-1 viral activity in an in vivo mouse model. Retrovirology. (In Press)Google Scholar
  12. Caval V, Bouzidi MS, Suspène R, Laude H, Dumargne MC, Bashamboo A, Krey T, Vartanian JP, Wain-Hobson S (2015) Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme. Nucleic Acids Res 43:9340–9349CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cen S, Guo F, Niu M, Saadatmand J, Deflassieux J, Kleiman L (2004) The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem 279:33177–33184Google Scholar
  14. Chaurasiya KR, McCauley MJ, Wang W, Qualley DF, Wu T, Kitamura S, Geertsema H, Chan DS, Hertz A, Iwatani Y, Levin JG, Musier-Forsyth K, Rouzina I, Williams MC (2014) Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein. Nat Chem 6:28–33CrossRefPubMedGoogle Scholar
  15. Chelico L, Prochnow C, Erie DA, Chen XS, Goodman MF (2010) Structural model for deoxycytidine deamination mechanisms of the HIV-1 inactivation enzyme APOBEC3G. J Biol Chem 285:16195–16205CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chelico L, Sacho EJ, Erie DA, Goodman MF (2008) A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. J Biol Chem 283:13780–13791CrossRefPubMedPubMedCentralGoogle Scholar
  17. Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS (2005) Evolution of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases. Molecular Biol Evolution 22:367–377CrossRefGoogle Scholar
  18. Devos JM, Tomanicek SJ, Jones CE, Nossal NG, Mueser TC (2007) Crystal structure of bacteriophage T4 5′ nuclease in complex with a branched DNA reveals how flap endonuclease-1 family nucleases bind their substrates. J Biol Chem 282:31713–31724CrossRefPubMedGoogle Scholar
  19. Drake JWaH, JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96:13910–13913Google Scholar
  20. Eckwahl MJ, Arnion H, Kharytonchyk S, Zang T, Bieniasz PD, Telesnitsky A, Wolin SL (2016) Analysis of the human immunodeficiency virus-1 RNA packageome. RNA 22:1228–1238CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eckwahl MJ, Sim S, Smith D, Telesnitsky A, Wolin SL (2015) A retrovirus packages nascent host noncoding RNAs from a novel surveillance pathway. Genes Dev 29:646–657CrossRefPubMedPubMedCentralGoogle Scholar
  22. Esnault C, Heidmann O, Delebecque F, Dewannieux M, Ribet D, Hance AJ, Heidmann T, Schwartz O (2005) APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433:430–433CrossRefPubMedGoogle Scholar
  23. Fang Y, Xiao X, Li SX, Wolfe A, Chen XS (2018) Molecular interactions of a dna modifying enzyme APOBEC3F catalytic domain with a single-stranded DNA. J Mol Biol 430:87–101CrossRefPubMedGoogle Scholar
  24. Feng Y, Chelico L (2011) Intensity of deoxycytidine deamination of HIV-1 proviral DNA by the retroviral restriction factor APOBEC3G is mediated by the noncatalytic domain. J Biol Chem 286:11415–11426CrossRefPubMedPubMedCentralGoogle Scholar
  25. Feng Y, Wong L, Morse M, Rouzina I, Williams MC, Chelico L (2018) RNA-mediated dimerization of the human deoxycytidine deaminase APOBEC3H influences enzyme activity and interaction with nucleic acids. J Mol Biol 430:4891–4907CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fourati S, Malet I, Binka M, Boukobza S, Wirden M, Sayon S, Simon A, Katlama C, Simon V, Calvez V et al (2010) Partially active HIV-1 Vif alleles facilitate viral escape from specific antiretrovirals. Aids 24:2313–2321PubMedGoogle Scholar
  27. Friew YN, Boyko V, Hu WS, Pathak VK (2009) Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA. Retrovirology 6:56CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fukuda H, Songling L, Sardo, L, Smith JL, Yamashita K, Sarca AD, Shirakawa K, Standley DM, Takaori-Kondo A, Izumi T (2019) Structural Determinants of the APOBEC3G N-Terminal Domain for HIV-1 RNA Association. Frontiers in Cellular and Infection Microbiology 9Google Scholar
  29. Gallois-Montbrun S, Holmes RK, Swanson CM, Fernandez-Ocana M, Byers HL, Ward MA, Malim MH (2008) Comparison of cellular ribonucleoprotein complexes associated with the APOBEC3F and APOBEC3G antiviral proteins. J Virol 82:5636–5642CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gallois-Montbrun S, Kramer B, Swanson CM, Byers H, Lynham S, Ward M, Malim MH (2007) Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virology 81:2165–2178CrossRefPubMedGoogle Scholar
  31. Guo Y, Dong L, Qiu X, Wang Y, Zhang B, Liu H, Yu Y, Zang Y, Yang M, Huang Z (2014) Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif. Nature 505:229–233CrossRefPubMedGoogle Scholar
  32. Harris RS, Dudley JP (2015) APOBECs and virus restriction. Virology (479–480):131–145Google Scholar
  33. Huthoff H, Autore F, Gallois-Montbrun S, Fraternali F, Malim MH (2009) RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog 5:e1000330CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huthoff H, Malim MH (2007) Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation. J Virology 81:3807–3815CrossRefPubMedGoogle Scholar
  35. Itano MS, Arnion H, Wolin SL, Simon SM (2018) Recruitment of 7SL1 RNA to assembling HIV-1 virus-like particles. Traffic. 19:36–43CrossRefPubMedGoogle Scholar
  36. Ito F, Yang H, Xiao X, Li SX, Wolfe A, Zirkle B, Arutiunian V, Chen XS (2018) Understanding the structure, multimerization, subcellular localization and mC selectivity of a genomic mutator and anti-HIV factor APOBEC3H. Sci Rep 8:3763CrossRefPubMedPubMedCentralGoogle Scholar
  37. Iwatani Y, Chan DS, Wang F, Maynard KS, Sugiura W, Gronenborn AM, Rouzina I, Williams MC, Musier-Forsyth K, Levin JG (2007) Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 35:7096–108CrossRefPubMedPubMedCentralGoogle Scholar
  38. Iwatani Y, Takeuchi H, Strebel K, Levin JG (2006) Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect. J Virology 80:5992–6002CrossRefPubMedGoogle Scholar
  39. Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Sci (New York, NY) 351:867–871CrossRefGoogle Scholar
  40. Jin X, Brooks A, Chen H, Bennett R, Reichman R, Smith H (2005) APOBEC3G/CEM15 (hA3G) mRNA levels associate inversely with human immunodeficiency virus viremia. J Virology 79:11513–11516CrossRefPubMedGoogle Scholar
  41. Keene SE, Telesnitsky A (2012) cis-Acting determinants of 7SL1 RNA packaging by HIV-1. J Virology 86:7934–7942CrossRefPubMedGoogle Scholar
  42. Khan MA, Goila-Gaur R, Kao S, Miyagi E, Walker RC Jr, Strebel K (2009) Encapsidation of APOBEC3G into HIV-1 virions involves lipid raft association and does not correlate with APOBEC3G oligomerization. Retrovirology 6:99CrossRefPubMedPubMedCentralGoogle Scholar
  43. Khan MA, Goila-Gaur R, Opi S, Miyagi E, Takeuchi H, Kao S, Strebel K (2007) Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology 4:48CrossRefPubMedPubMedCentralGoogle Scholar
  44. Khan MA, Kao S, Miyagi E, Takeuchi H, Goila-Gaur R, Opi S, Gipson CL, Parslow TG, Ly H, Strebel K (2005) Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. J Virol 79:5870–5874CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kikuchi T, Iwabu Y, Tada T, Kawana-Tachikawa A, Koga M, Hosoya N, Nomura S, Brumme ZL, Jessen H, Pereyra F et al (2015) Anti-APOBEC3G activity of HIV-1 Vif protein is attenuated in elite controllers. J Virol 89:4992–5001CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kim EY, Bhattacharya T, Kunstman K, Swantek P, Koning FA, Malim MH, Wolinsky SM (2010) Human APOBEC3G-mediated editing can promote HIV-1 sequence diversification and accelerate adaptation to selective pressure. J Virology 84:10402–10405CrossRefPubMedGoogle Scholar
  47. Kouno T, Luengas EM, Shigematsu M, Shandilya SM, Zhang J, Chen L, Hara M, Schiffer CA, Harris RS, Matsuo H (2015) Structure of the Vif-binding domain of the antiviral enzyme APOBEC3G. Nature Struct Molecular Biol 22:485–491CrossRefGoogle Scholar
  48. Kouno T, Silvas TV, Hilbert BJ, Shandilya SMD, Bohn MF, Kelch BA, Royer WE, Somasundaran M, Kurt Yilmaz N, Matsuo H, Schiffer CA (2017) Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nat Commun 8:15024CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kourteva Y, De Pasquale M, Allos T, McMunn C, D’Aquila RT (2012) APOBEC3G expression and hypermutation are inversely associated with human immunodeficiency virus type 1 (HIV-1) burden in vivo. Virology 430:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kozak SL, Marin M, Rose KM, Bystrom C, Kabat D (2006) The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem 281:29105–29119CrossRefPubMedGoogle Scholar
  51. Kreisberg JF, Yonemoto W, Greene WC (2006) Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J Exp Med 203:865–870CrossRefPubMedPubMedCentralGoogle Scholar
  52. Krisko JF, Martinez-Torres F, Foster JL, Garcia JV (2013) HIV restriction by APOBEC3 in humanized mice. PLoS Pathog 9:e1003242CrossRefPubMedPubMedCentralGoogle Scholar
  53. Krupp A, McCarthy KR, Ooms M, Letko M, Morgan JS, Simon V, Johnson WE (2013) APOBEC3G polymorphism as a selective barrier to cross-species transmission and emergence of pathogenic SIV and AIDS in a primate host. PLoS Pathog 9:e1003641CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kutluay SB, Zang T, Blanco-Melo D, Powell C, Jannain D, Errando M, Bieniasz PD (2014) Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis. Cell 159:1096–1109CrossRefPubMedPubMedCentralGoogle Scholar
  55. MacMillan AL, Kohli RM, Ross SR (2013) APOBEC3 inhibition of mouse mammary tumor virus infection: the role of cytidine deamination versus inhibition of reverse transcription. J Virology 87:4808–4817CrossRefPubMedGoogle Scholar
  56. Maiti A, Myint W, Kanai T, Delviks-Frankenberry K, Sierra Rodriguez C, Pathak VK, Schiffer CA, Matsuo H (2018) Crystal structure of the catalytic domain of HIV-1 restriction factor APOBEC3G in complex with ssDNA. Nat Commun 9:2460CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mansky LMaT HM (1995) Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69:5087–5094Google Scholar
  58. Matsuoka T, Nagae T, Ode H, Awazu H, Kurosawa T, Hamano A, Matsuoka K, Hachiya A, Imahashi M, Yokomaku Y et al (2018) Structural basis of chimpanzee APOBEC3H dimerization stabilized by double-stranded RNA. Nucleic Acids Res 46:10368–10379CrossRefPubMedPubMedCentralGoogle Scholar
  59. McDougall WM, Okany C, Smith HC (2011) Deaminase activity on single-stranded DNA (ssDNA) occurs in vitro when APOBEC3G cytidine deaminase forms homotetramers and higher-order complexes. J Biol Chem 286:30655–30661CrossRefPubMedPubMedCentralGoogle Scholar
  60. McDougall WM, Smith HC (2011) RNA-Dependent inhibition of APOBEC3G ssDNA cytidine deaminase activity. Biochem Biophys Res Commun 412:612–7CrossRefPubMedPubMedCentralGoogle Scholar
  61. Morse M, Huo R, Feng Y, Rouzina I, Chelico L, Williams MC (2017) Dimerization regulates both deaminase-dependent and deaminase-independent HIV-1 restriction by APOBEC3G. Nat Commun. 8:597CrossRefPubMedPubMedCentralGoogle Scholar
  62. Munk C, Willemsen A, Bravo IG (2012) An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evol Biol 12:71CrossRefPubMedPubMedCentralGoogle Scholar
  63. Muriaux D, Darlix JL (2010) Properties and functions of the nucleocapsid protein in virus assembly. RNA Biol 7:744–53CrossRefPubMedPubMedCentralGoogle Scholar
  64. Navarro F, Bollman B, Chen H, Konig R, Yu Q, Chiles K, Landau NR (2005) Complementary function of the two catalytic domains of APOBEC3G. Virology 333:374–386CrossRefPubMedGoogle Scholar
  65. Okeoma CM, Lovsin N, Peterlin BM, Ross SR (2007) APOBEC3 inhibits mouse mammary tumour virus replication in vivo. Nature 445:927–930CrossRefPubMedGoogle Scholar
  66. Ooms MBB, Letko M, Maio SM, Pilcher CD, Hecht FM, Barbour JD, Simon V (2013) HIV-1 Vif adaptation to human APOBEC3H haplotypes. Cell Host Microbe 14:411–421CrossRefPubMedGoogle Scholar
  67. Opi S, Takeuchi H, Kao S, Khan MA, Miyagi E, Goila-Gaur R, Iwatani Y, Levin JG, Strebel K (2006) Monomeric APOBEC3G is catalytically active and has antiviral activity. J Virol 80:4673–4682CrossRefPubMedPubMedCentralGoogle Scholar
  68. Pan Y, Sun Z, Maiti A, Kanai T, Matsuo H, Li M, Harris RS, Shlyakhtenko LS, Lyubchenko YL (2016) Nanoscale characterization of interaction of APOBEC3G with RNA. BiochemistryGoogle Scholar
  69. De Pasquale M, Kourteva Y, Allos T, D’Aquila RT (2013) Lower HIV provirus levels are associated with more APOBEC3G protein in blood resting memory CD4+T lymphocytes of controllers in vivo. PLoS ONE 8:e76002CrossRefPubMedPubMedCentralGoogle Scholar
  70. Peng G, Greenwell-Wild T, Nares S, Jin W, Lei KJ, Rangel ZG, Munson PJ, Wahl SM (2007) Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 110:393–400CrossRefPubMedPubMedCentralGoogle Scholar
  71. Pery E, Sheehy A, Nebane NM, Brazier AJ, Misra V, Rajendran KS, Buhrlage SJ, Mankowski MK, Rasmussen L, White EL et al (2015) Identification of a novel HIV-1 inhibitor targeting Vif-dependent degradation of human APOBEC3G protein. J Biol Chem 290:10504–10517CrossRefPubMedPubMedCentralGoogle Scholar
  72. Polevoda B, Joseph R, Friedman AE, Bennett RP, Greiner R, De Zoysa T, Stewart RA, Smith HC (2017) DNA mutagenic activity and capacity for HIV-1 restriction of the cytidine deaminase APOBEC3G depend on whether DNA or RNA binds to tyrosine 315. J Biol Chem 292:8642–8656CrossRefPubMedPubMedCentralGoogle Scholar
  73. Polevoda B, McDougall WM, Bennett RP, Salter JD, Smith HC (2016) Structural and functional assessment of APOBEC3G macromolecular complexes. Methods 107:10–22CrossRefPubMedPubMedCentralGoogle Scholar
  74. Polevoda B, McDougall WM, Tun BN, Cheung M, Salter JD, Friedman AE, Smith HC (2015) RNA binding to APOBEC3G induces the disassembly of functional deaminase complexes by displacing single-stranded DNA substrates. Nucleic Acids Res 43:9434–9445CrossRefPubMedPubMedCentralGoogle Scholar
  75. Poropatich KaS, DJ, Jr (2011) Human immunodeficiency virus type 1 long-term non-progressors: the viral, genetic and immunological basis for disease non-progression. J General Virology 92:247–268Google Scholar
  76. Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, Wu H (2017) AID recognizes structured DNA for class switch recombination. Mol Cell 67:361–373.e364CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rangel HR, Garzaro D, Rodriguez AK, Ramirez AH, Ameli G, Del Rosario Gutierrez C, Pujol FH (2009) Deletion, insertion and stop codon mutations in vif genes of HIV-1 infecting slow progressor patients. J Infect Dev Ctries 3:531–538CrossRefPubMedGoogle Scholar
  78. Reddy K, Ooms M, Letko M, Garrett N, Simon V, Ndung’u T (2016) Functional characterization of Vif proteins from HIV-1 infected patients with different APOBEC3G haplotypes. AidsGoogle Scholar
  79. Refsland EW, Stenglein MD, Shindo K, Albin JS, Brown WL, Harris RS (2010) Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res 38:4274–4284CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sadler HA, Stenglein MD, Harris RS, Mansky LM (2010) APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis. J Virology 84:7396–7404CrossRefPubMedGoogle Scholar
  81. Salter et al (2014a) Structural insights for HIV-1therapeutic strategies targeting Vif. Trends Biochem Sci 39:373–380CrossRefPubMedPubMedCentralGoogle Scholar
  82. Salter JD, Bennett RP, Smith HC (2016) The APOBEC protein family: united by structure, divergent in function. Trends Biochem Sci 41:578–594CrossRefPubMedPubMedCentralGoogle Scholar
  83. Salter JD, Morales GA, Smith HC (2014b) Structural insights for HIV-1 therapeutic strategies targeting Vif. Trends Biochem Sci 39:373–380CrossRefPubMedPubMedCentralGoogle Scholar
  84. Salter JD, Smith HC (2018) Modeling the embrace of a mutator: APOBEC selection of nucleic acid ligands. Trends in Biochem Sci 43:606–622CrossRefGoogle Scholar
  85. Sato K, Izumi T, Misawa N, Kobayashi T, Yamashita Y, Ohmichi M, Ito M, Takaori-Kondo A, Koyanagi Y (2010) Remarkable lethal G-to-A mutations in vif-proficient HIV-1 provirus by individual APOBEC3 proteins in humanized mice. J Virology 84:9546–9556CrossRefPubMedGoogle Scholar
  86. Sawyer SL, Emerman M, Malik HS (2004) Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2:E275CrossRefPubMedPubMedCentralGoogle Scholar
  87. von Schwedler U, Song J, Aiken C, Trono D (1993) Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virology 67:4945–4955CrossRefGoogle Scholar
  88. Shaban NM, Shi K, Lauer KV, Carpenter MA, Richards CM, Salamango D, Wang J, Lopresti MW, Banerjee S, Levin-Klein R, Brown WL, Aihara H, Harris RS (2018) The antiviral and cancer genomic DNA deaminase APOBEC3H is regulated by an RNA-Mediated dimerization mechanism. Mol Cell 69:75–86CrossRefPubMedGoogle Scholar
  89. Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650CrossRefPubMedGoogle Scholar
  90. Shi K, Carpenter MA, Kurahashi K, Harris RS, Aihara H (2015) Crystal structure of the DNA deaminase APOBEC3B catalytic domain. J Biol Chem 290:28120–28130CrossRefPubMedPubMedCentralGoogle Scholar
  91. Shi K, Demir Ö, Carpenter MA, Wagner J, Kurahashi K, Harris RS, Amaro RE, Aihara H (2017) Conformational switch regulates the DNA cytosine deaminase activity of human APOBEC3B. Sci Rep 7:17415CrossRefPubMedPubMedCentralGoogle Scholar
  92. Shi K, Carpenter, MA, Banerjee, S, Shaban, NM, Kurahashi, K1, Salamango, DJ, McCann, JL, Starrett, GJ, Duffy, JV, Demir, Ö, Amaro, RE, Harki, DA, Harris, RS, Aihara, H (2017a) Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nature Struct Molecular Biol 24:131–139Google Scholar
  93. Simon V, Zennou V, Murray D, Huang Y, Ho DD, Bieniasz PD (2005) Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS Pathog 1:e6CrossRefPubMedPubMedCentralGoogle Scholar
  94. Simon VBN, Landau NR (2015) Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 16:546–553Google Scholar
  95. Siu KK, Sultana A, Azimi FC, Lee JE (2013) Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F. Nat Commun 4:2593Google Scholar
  96. Smith HC (2011) APOBEC3G: a double agent in defense. Trends Biochem Sci 36:239–244CrossRefPubMedPubMedCentralGoogle Scholar
  97. Smith HC (2016) RNA binding to APOBEC deaminases; Not simply a substrate for C to U editing. RNA Biol 14:1153–1165Google Scholar
  98. Soros VB, Yonemoto W, Greene WC (2007) Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H. PLoS Pathog 3:e15CrossRefPubMedPubMedCentralGoogle Scholar
  99. Sova P, Volsky DJ (1993) Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. J Virology 67:6322–6326CrossRefPubMedGoogle Scholar
  100. Stavrou S, Crawford D, Blouch K, Browne EP, Kohli RM, Ross SR (2014) Different modes of retrovirus restriction by human APOBEC3A and APOBEC3G in vivo. PLoS Pathog 10:e1004145CrossRefPubMedPubMedCentralGoogle Scholar
  101. Strebel K, Khan MA (2008) APOBEC3G encapsidation into HIV-1 virions: which RNA is it? Retrovirology 5:55CrossRefPubMedPubMedCentralGoogle Scholar
  102. Svarovskaia ES, Xu H, Mbisa JL, Barr R, Gorelick RJ, Ono A, Freed EO, Hu WS, Pathak VK (2004) Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem 279:35822–35828CrossRefPubMedGoogle Scholar
  103. Thangavelu PU, Gupta V, Dixit NM (2014) Estimating the fraction of progeny virions that must incorporate APOBEC3G for suppression of productive HIV-1 infection. Virology 449:224–228CrossRefPubMedGoogle Scholar
  104. Venkatesan SRR, Kanu N, McGranahan N, Bartek J, Quezada SA, Hare J, Harris RS8, Swanton C1 (2018) Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann Oncology 29:563–572Google Scholar
  105. Wang T, Tian C, Zhang W, Luo K, Sarkis PT, Yu L, Liu B, Yu Y, Yu XF (2007) 7SL1 RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J Virology 81:13112–13124CrossRefPubMedGoogle Scholar
  106. Wang TTC, Zhang W, Sarkis PT, Yu XF (2008a) Interaction with 7SL1 RNA but not with HIV-1 genomic RNA or P bodies is required for APOBEC3F virion packaging. J Mol Biol 375:1098–1112CrossRefPubMedGoogle Scholar
  107. Wang T, Zhang W, Tian C, Liu B, Yu Y, Ding L, Spearman P, Yu XF (2008b) Distinct viral determinants for the packaging of human cytidine deaminases APOBEC3G and APOBEC3C. Virology 377:71–79CrossRefPubMedPubMedCentralGoogle Scholar
  108. Wedekind JE, Gillilan R, Janda A, Krucinska J, Salter JD, Bennett RP, Raina J, Smith HC (2006) Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular mass ribonucleoprotein particles from dimeric subunits. J Biological Chem 281:38122–38126CrossRefGoogle Scholar
  109. Wichroski MJ, Robb GB, Rana TM (2006) Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog 2:e41CrossRefPubMedPubMedCentralGoogle Scholar
  110. Xiao X, Li SX, Yang H, Chen XS (2016) Crystal structures of APOBEC3G N-domain alone and its complex with DNA. Nat Commun 7:12193CrossRefPubMedPubMedCentralGoogle Scholar
  111. Xiao X, Yang H, Arutiunian V, Fang Y, Besse G, Morimoto C, Zirkle B, Chen XS (2017) Structural determinants of APOBEC3B non-catalytic domain for molecular assembly and catalytic regulation. Nucleic Acids Res 45:7494–7506CrossRefPubMedPubMedCentralGoogle Scholar
  112. Xu H, Chertova E, Chen J, Ott DE, Roser JD, Hu WS, Pathak VK (2007) Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions. Virology 360:247–256CrossRefPubMedGoogle Scholar
  113. York A, Kutluay SB, Errando M, Bieniasz PD (2016) The RNA binding specificity of human APOBEC3 proteins resembles That of HIV-1 Nucleocapsid. PLoS Pathog 12:e1005833CrossRefPubMedPubMedCentralGoogle Scholar
  114. Zhang W, Du J, Yu K, Wang T, Yong X, Yu XF (2010) Association of potent human antiviral cytidine deaminases with 7SL1 RNA and viral RNP in HIV-1 virions. J Virology 84:12903–12913CrossRefPubMedGoogle Scholar
  115. Zhang KL, Mangeat B, Ortiz M, Zoete V, Trono D, Telenti A, Michielin O (2007) Model structure of human APOBEC3G. PLoS ONE 2:e378CrossRefPubMedPubMedCentralGoogle Scholar
  116. Zhang J, Webb DM (2004) Rapid evolution of primate antiviral enzyme APOBEC3G. Hum Mol Genet 13:1785–1791CrossRefPubMedGoogle Scholar
  117. Zheng Y-H, Jeang K-T, Tokunaga K (2012) Host restriction factors in retroviral infection: promises in virus-host interaction. Retrovirology 9:112Google Scholar
  118. Ziegler SJ, Liu C, Landau M, Buzovetsky O, Desimmie BA, Zhao Q, Sasaki T, Burdick RC, Pathak VK, Anderson KS et al (2018) Insights into DNA substrate selection by APOBEC3G from structural, biochemical, and functional studies. PLoS ONE 13:e0195048CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jason D. Salter
    • 1
  • Bogdan Polevoda
    • 2
  • Ryan P. Bennett
    • 1
  • Harold C. Smith
    • 1
    • 2
    Email author
  1. 1.OyaGen, IncRochesterUSA
  2. 2.Department of Biochemistry and Biophysics, School of Medicine and DentistryUniversity of RochesterRochesterUSA

Personalised recommendations