Amyloid Oligomers, Protofibrils and Fibrils

  • Mohammad Khursheed Siddiqi
  • Nabeela Majid
  • Sadia Malik
  • Parvez Alam
  • Rizwan Hasan KhanEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 93)


Amyloid diseases are of major concern all over the world due to a number of factors including: (i) aging population, (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multi-targeting small molecules as therapeutic options. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia/cell dysfunction. Here, in this chapter, we have described the recent scenario of amyloid diseases with a great deal of information about the structural features of oligomers, protofibrils and fibrils. Also, comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates. Moreover, a review of the technologies that aid characterisation of oligomer, protofibrils and fibrils as well as various inhibition strategies to overcome protein fibrillation are also discussed.


Alzheimer’ disease Amyloid Prefibrillar aggregates Cell toxicity 



Facilities provided by Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh are gratefully acknowledged. For providing financial assistance, M.K.S. is thankful to Department of Biotechnology (DBT), New Delhi, India, P.A. and N.M. are thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, India, S.M. is thankful to Indian Council of Medical Research (ICMR), New Delhi, India. R.H.K. is thankful to CSIR and UGC for project referenced as 37(1676)/17/EMR—II and F. 19-219/2018, respectively.

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.


  1. Alam P, Beg AZ et al (2017a) Ascorbic acid inhibits human insulin aggregation and protects against amyloid induced cytotoxicity. Arch Biochem Biophys 621:54–62CrossRefGoogle Scholar
  2. Alam P, Siddiqi MK et al (2017b) Vitamin B12 offers neuronal cell protection by inhibiting Aβ-42 amyloid fibrillation. Int J Biol Macromol 99:477–482CrossRefGoogle Scholar
  3. Arispe N, Doh M (2002) Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AβP (1–40) and (1–42) peptides. FASEB J 16(12):1526–1536CrossRefGoogle Scholar
  4. Bagriantsev SN, Kushnirov VV et al (2006) Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol 412:33–48CrossRefGoogle Scholar
  5. Bartolini M, Andrisano V (2010) Strategies for the inhibition of protein aggregation in human diseases. ChemBioChem 11(8):1018–1035CrossRefGoogle Scholar
  6. Bhutani N, Venkatraman P et al (2007) Puromycin-sensitive aminopeptidase is the major peptidase responsible for digesting polyglutamine sequences released by proteasomes during protein degradation. EMBO J 26(5):1385–1396CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bitan G, Lomakin A et al (2001) Amyloid β-protein oligomerization. I. Prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol ChemGoogle Scholar
  8. Bitan G, Fradinger EA et al (2005) Neurotoxic protein oligomers—what you see is not always what you get. Amyloid 12(2):88–95CrossRefGoogle Scholar
  9. Blennow K, Hampel H et al (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3):131Google Scholar
  10. Bodner RA, Outeiro TF et al (2006) Pharmacological promotion of inclusion formation: a therapeutic approach for Huntington’s and Parkinson’s diseases. Proc Natl Acad Sci 103(11):4246–4251CrossRefGoogle Scholar
  11. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18(4):351–357CrossRefGoogle Scholar
  12. Brkic M, Balusu S et al (2015) Amyloid β oligomers disrupt blood’s CSF barrier integrity by activating and detection. Process Biochem 51(9):1183–1192Google Scholar
  13. Brown CR, Hong-Brown LQ et al (1996) Chemical chaperones correct the mutant phenotype of the ΔF508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperon 1(2):117Google Scholar
  14. Brown PH, Balbo A et al (2008) Characterizing protein - protein interactions by sedimentation velocity analytical ultracentrifugation. Curr Protoc Immunol 81(1):18.15.1–18.15.39Google Scholar
  15. Bullock J (1993) Application of capillary electrophoresis to the analysis of the oligomeric distribution of polydisperse polymers. J Chromatogr A 645(1):169–177Google Scholar
  16. Burdick D, Soreghan B et al (1992) Assembly and aggregation properties of synthetic Alzheimer's A4/beta amyloid peptide analogs. J Biol Chem 267(1):546–554Google Scholar
  17. Cantor CR, Schimmel PR (1981). Biophysical chemistry: part II - Techniques for the study of biological structure and function. Biochem Educ 1:157–157Google Scholar
  18. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples:  localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69(23):4751–4760Google Scholar
  19. Chaudhuri JB, Batas B et al (1996) Improving protein refolding yields by minimizing aggregation. Ann N Y Acad Sci 782(1):495–505CrossRefGoogle Scholar
  20. Chaturvedi SK, Siddiqi MK, Alam P, Khan RH (2016) Protein misfolding and aggregation: mechanism, factors and detection. Process Biochemi 51(9):1183–1192Google Scholar
  21. Chen L (2015) De novo protein structure modeling and energy function design. Old Dominion UniversityGoogle Scholar
  22. Chen SW, Drakulic S et al (2015) Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proc Nat Acad Sci 201421204Google Scholar
  23. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366CrossRefPubMedPubMedCentralGoogle Scholar
  24. Coalier KA, Paranjape GS et al (2013) Stability of early-stage amyloid-β (1–42) aggregation species. Biochim et Biophys Acta (BBA)-Proteins Proteomics 1834(1):65–70Google Scholar
  25. Crane JM, Tamm LK (2004) Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys J 86(5):2965–2979CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cummings J, Lee G et al (2018) Alzheimer’s disease drug development pipeline: 2018. Alzheimer’s & Dementia: Translational Research & Clinical InterventionsGoogle Scholar
  27. Cummings JL, Vinters HV et al (1998) Alzheimer’s disease etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51(1 Suppl 1):S2–S17CrossRefGoogle Scholar
  28. Damaschun G, Damaschun H et al (1999) Proteins can adopt totally different folded conformations. J Mol Biol 291(3):715–725CrossRefGoogle Scholar
  29. Dasari M, Espargaro A et al (2011) Bacterial inclusion bodies of Alzheimer’s Disease β-amyloid peptides can be employed to study native-like aggregation intermediate states. ChemBioChem 12(3):407–423CrossRefGoogle Scholar
  30. de Chaves EP, Sipione S (2010) Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett 584(9):1748–1759CrossRefGoogle Scholar
  31. de la Paz ML, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci 101(1):87–92CrossRefGoogle Scholar
  32. Di Scala C, Yahi N et al (2016) Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide andα-synuclein. Sci Rep 6:28781CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ding W-X, Yin X-M (2008) Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4(2):141–150CrossRefGoogle Scholar
  34. Dong X-X, Wang Y et al (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30(4):379CrossRefPubMedPubMedCentralGoogle Scholar
  35. Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282(5389):740–744CrossRefGoogle Scholar
  36. Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148(6):1188–1203CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fauvet B, Kamdem MM et al (2012) Alpha-synuclein in the central nervous system and from erythrocytes, mammalian cells and E. coli exists predominantly as a disordered monomer. J Biol Chem: jbc. M111 318949Google Scholar
  38. Fawzi NL, Ying J et al (2010) Kinetics of amyloid β monomer-to-oligomer exchange by NMR relaxation. J Am Chem Soc 132(29):9948–9951CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3(1):R9–R23CrossRefGoogle Scholar
  40. Fodera V, Librizzi F et al (2008) Secondary nucleation and accessible surface in insulin amyloid fibril formation. J Phys Chem B 112(12):3853–3858CrossRefGoogle Scholar
  41. Forloni G, Angeretti N et al (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420):543CrossRefGoogle Scholar
  42. Frid P, Anisimov SV et al (2007) Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 53(1):135–160CrossRefGoogle Scholar
  43. Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70(1):603–647CrossRefGoogle Scholar
  44. Gabrielson JP, Arthur KK et al (2011) Precision of protein aggregation measurements by sedimentation velocity analytical ultracentrifugation in biopharmaceutical applications. Anal Biochem 396(2):231–241CrossRefGoogle Scholar
  45. Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283(44):29639–29643CrossRefPubMedPubMedCentralGoogle Scholar
  46. Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14(7):1261–1273CrossRefPubMedPubMedCentralGoogle Scholar
  47. Goldsbury C, Baxa U et al (2011) Amyloid structure and assembly: insights from scanning transmission electron microscopy. J Struct Biol 173(1):1–13CrossRefGoogle Scholar
  48. Gosal WS, Myers SL et al (2006) Amyloid under the atomic force microscope. Protein Pept Lett 13(3):261–270CrossRefGoogle Scholar
  49. Groenning M (2010) Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status. J Chem Biol 3(1):1–18CrossRefGoogle Scholar
  50. Guise AD, West SM et al (1996) Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies. Mol Biotechnol 6(1):53–64CrossRefGoogle Scholar
  51. Guivernau B, Bonet J et al (2016) Amyloid-β peptide nitrotyrosination stabilizes oligomers and enhances nmdar-mediated toxicity. J Neurosci 36(46):11693–11703CrossRefPubMedPubMedCentralGoogle Scholar
  52. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8(2):101CrossRefGoogle Scholar
  53. Hartl FU, Bracher A et al (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324CrossRefGoogle Scholar
  54. Hassan PA, Rana S et al (2014) Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir 31(1):3–12CrossRefGoogle Scholar
  55. Hermes M, Eichhoff G et al (2010) Intracellular calcium signalling in Alzheimer’s disease. J Cell Mol Med 14(12):30–41Google Scholar
  56. Hersh LB, Rodgers DW (2008) Neprilysin and amyloid beta peptide degradation. Curr Alzheimer Res 5(2):225–231CrossRefGoogle Scholar
  57. Huang C, Cheng H et al (2006) Heat shock protein 70 inhibits α-synuclein fibril formation via interactions with diverse intermediates. J Mol Biol 364(3):323–336CrossRefGoogle Scholar
  58. Huang B, He J et al (2009) Cellular membrane disruption by amyloid fibrils involved intermolecular disulfide cross-linking. Biochemistry 48(25):5794–5800CrossRefGoogle Scholar
  59. Hubin E, Van Nuland NAJ et al (2014) Transient dynamics of Aβ contribute to toxicity in Alzheimer’s disease. Cell Mol Life Sci 71(18):3507–3521CrossRefPubMedPubMedCentralGoogle Scholar
  60. Irvine GB, El-Agnaf OM et al (2008) Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol Med 14(7–8):451–464CrossRefPubMedPubMedCentralGoogle Scholar
  61. Jomova K, Valko M (2011) Importance of iron chelation in free radical-induced oxidative stress and human disease. Curr Pharm Des 17(31):3460–3473CrossRefGoogle Scholar
  62. Kakio A, Nishimoto S-I et al (2002) Interactions of amyloid β-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41(23):7385–7390CrossRefGoogle Scholar
  63. Karasek FW (1974) Plasma chromatography. Anal Chem 46(8):710A–720aCrossRefGoogle Scholar
  64. Kawamata H, Manfredi G (2010) Mitochondrial dysfunction and intracellular calcium dysregulation in ALS. Mech Ageing Dev 131(7–8):517–526CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kayed R, Lasagna-Reeves CA (2013) Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis 33(s1):S67–S78CrossRefGoogle Scholar
  66. Kelly SM, Price NC (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1(4):349–384CrossRefGoogle Scholar
  67. Kim H-Y, Cho M-K et al (2009) Structural properties of pore-forming oligomers of α-synuclein. J Am Chem Soc 131(47):17482–17489CrossRefGoogle Scholar
  68. Kirkitadze MD, Bitan G et al (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 69(5):567–577CrossRefGoogle Scholar
  69. Kitazawa M, Medeiros R et al (2012) Transgenic mouse models of Alzheimer disease: developing a better model as a tool for therapeutic interventions. Curr Pharm Des 18(8):1131–1147CrossRefPubMedPubMedCentralGoogle Scholar
  70. Knowles TPJ, Vendruscolo M et al (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15(6):384CrossRefGoogle Scholar
  71. Kondratskyi A, Yassine M et al (2013) Calcium-permeable ion channels in control of autophagy and cancer. Front Physiol 4:272CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kress GJ, Mennerick S (2009) Action potential initiation and propagation: upstream influences on neurotransmission. Neuroscience 158(1):211–222CrossRefGoogle Scholar
  73. Lal R, Lin H et al (2007) Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim et Biophys Acta (BBA)-Biomembr 1768(8):1966–1975Google Scholar
  74. Lawrence GJ, Payne PI (1983) Detection by gel electrophoresis of oligomers formed by the association of high-molecular-weight glutenin protein subunits of wheat endosperm. J Exp Bot 34(3):254–267CrossRefGoogle Scholar
  75. Lemasters JJ, Nieminen AL et al (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim et Biophys Acta (BBA)-Bioenerg 1366(1–2):177–196Google Scholar
  76. Levine Iii H (1993) Thioflavin T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2(3):404–410CrossRefGoogle Scholar
  77. Levine Iii H (2004) Alzheimer’s β-peptide oligomer formation at physiologic concentrations. Anal Biochem 335(1):81–90CrossRefGoogle Scholar
  78. Lewandowski JZR, van der Wel PCA et al (2011) Structural complexity of a composite amyloid fibril. J Am Chem Soc 133(37):14686–14698Google Scholar
  79. Li D-W, Mohanty S et al (2008) Formation and growth of oligomers: a Monte Carlo study of an amyloid tau fragment. PLoS Comput Biol 4(12):e1000238CrossRefPubMedPubMedCentralGoogle Scholar
  80. Lindstrom V, Fagerqvist T et al (2014) Immunotherapy targeting α-synuclein protofibrils reduced pathology in (Thy-1)-h [A30P] α-synuclein mice. Neurobiol Dis 69:134–143CrossRefGoogle Scholar
  81. Lodish H, Berk A et al (2000) The action potential and conduction of electric impulsesGoogle Scholar
  82. Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci 91(25):12243–12247CrossRefGoogle Scholar
  83. Luxembourg SL, Mize TH et al (2004) High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Anal Chem 76(18):5339–5344CrossRefGoogle Scholar
  84. MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32(4s):526CrossRefGoogle Scholar
  85. Magi S, Castaldo P et al (2016) Intracellular calcium dysregulation: implications for Alzheimer’s disease. BioMed Res IntGoogle Scholar
  86. Mahdavimehr M, Katebi B et al (2018) Effect of fibrillation conditions on the anti-amyloidogenic properties of polyphenols and their involved mechanisms. Int J Biol Macromol 118:552–560CrossRefGoogle Scholar
  87. Mahler H-C, Friess W et al (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98(9):2909–2934CrossRefGoogle Scholar
  88. Malchiodi-Albedi F, Paradisi S et al (2011) Amyloid oligomer neurotoxicity, calcium dysregulation, and lipid rafts. Int J Alzheimer’s DisGoogle Scholar
  89. Marambaud P, Dreses-Werringloer U et al (2009) Calcium signaling in neurodegeneration. Mol Neurodegeneration 4(1):20CrossRefGoogle Scholar
  90. McDermott JR, Gibson AM (1997) Degradation of Alzheimer’s β-Amyloid Protein by Human and Rat Brain Peptidases: involvement of Insulin-Degrading Enzyme. Neurochem Res 22(1):49–56CrossRefGoogle Scholar
  91. McDonald JM, Savva GM et al (2010) The presence of sodium dodecyl sulphate-stable Aβ dimers is strongly associated with Alzheimer-type dementia. Brain 133(5):1328–1341CrossRefGoogle Scholar
  92. Mezler M, Barghorn S et al (2012) A β-amyloid oligomer directly modulates P/Q-type calcium currents in Xenopus oocytes. Br J Pharmacol 165(5):1572–1583CrossRefPubMedPubMedCentralGoogle Scholar
  93. Miranda E, MacLeod I et al (2008) The intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB. Hum Mol Genet 17(11):1527–1539CrossRefPubMedPubMedCentralGoogle Scholar
  94. Missiroli S, Patergnani S et al (2018) Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis 9(3):329CrossRefPubMedPubMedCentralGoogle Scholar
  95. Morais-de-Sa E, Neto-Silva RM et al (2006) The binding of 2, 4-dinitrophenol to wild-type and amyloidogenic transthyretin. Acta Crystallogr D Biol Crystallogr 62(5):512–519CrossRefGoogle Scholar
  96. Morris GP, Clark IA et al (2014) Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol Commun 2(1):135PubMedPubMedCentralGoogle Scholar
  97. Musiek ES, Holtzman DM (2015) Three dimensions of the amyloid hypothesis: time, space and’wingmen’. Nat Neurosci 18(6):800CrossRefPubMedPubMedCentralGoogle Scholar
  98. Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34(1):151–160CrossRefGoogle Scholar
  99. Ono Y, Sorimachi H (2012) Calpains—an elaborate proteolytic system. Biochim et Biophys Acta (BBA)-Proteins Proteomics 1824(1):224–236Google Scholar
  100. Otzen DE (2013) Amyloid fibrils and prefibrillar aggregates: molecular and biological properties. WileyGoogle Scholar
  101. Parvez Alam KSSKCRHK (2017) Protein aggregation: from background to inhibition strategies. Int J Biol Macromol 109:208–219CrossRefGoogle Scholar
  102. Paslawski W, Mysling S et al (2014) Co-existence of two different α-synuclein oligomers with different core structures determined by hydrogen/deuterium exchange mass spectrometry. Angew Chem Int Ed 53(29):7560–7563CrossRefGoogle Scholar
  103. Pedersen JT, Ostergaard J et al (2011) Cu (II) mediates kinetically distinct, non-amyloidogenic aggregation of amyloid-β peptides. J Biol Chem: jbc. M111:220863Google Scholar
  104. Pernber Z, Blennow K et al (2012) Altered distribution of the gangliosides GM1 and GM2 in Alzheimer’s disease. Dement Geriatr Cogn Disord 33(2–3):174–188CrossRefGoogle Scholar
  105. Picou RA, Schrum DP et al (2012) Separation and detection of individual Aβ aggregates by capillary electrophoresis with laser-induced fluorescence detection. Anal Biochem 425(2):104–112CrossRefGoogle Scholar
  106. Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41(6):1261–1268CrossRefGoogle Scholar
  107. Podlisny MB, Ostaszewski BL et al (1995) Aggregation of secreted amyloid-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem 270(16):9564–9570CrossRefGoogle Scholar
  108. Podlisny MB, Walsh DM et al (1998) Oligomerization of endogenous and synthetic amyloid β-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red. Biochemistry 37(11):3602–3611CrossRefGoogle Scholar
  109. Porat Y, Abramowitz A et al (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67(1):27–37CrossRefGoogle Scholar
  110. Pryor E, Kotarek JA et al (2011) Monitoring insulin aggregation via capillary electrophoresis. Int J Mol Sci 12(12):9369–9388CrossRefPubMedPubMedCentralGoogle Scholar
  111. Robert KY, Tsai Y-T et al (2012) Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 37(6):1230–1244CrossRefGoogle Scholar
  112. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(7):S10CrossRefGoogle Scholar
  113. Sabate R, Ventura S (2013) Cross-β-sheet supersecondary structure in amyloid folds: techniques for detection and characterization. Protein Supersecondary Structures, Springer, pp 237–257Google Scholar
  114. Salomone S, Caraci F et al (2012) New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Brit J Clin Pharmacol 73(4):504–517Google Scholar
  115. Schelterns P, Feldman H (2003) Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol 2(9):539–547CrossRefGoogle Scholar
  116. Schild L, Reiser G (2005) Oxidative stress is involved in the permeabilization of the inner membrane of brain mitochondria exposed to hypoxia/reoxygenation and low micromolar Ca2+. FEBS J 272(14):3593–3601CrossRefGoogle Scholar
  117. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78(3):1606–1619CrossRefPubMedPubMedCentralGoogle Scholar
  118. Sebollela A, Freitas-Correa L et al (2012) Amyloid-β oligomers induce differential gene expression in adult human brain slices. J Biol Chem jbc. M111:298471Google Scholar
  119. Seeley WW, Crawford RK et al (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62(1):42–52CrossRefPubMedPubMedCentralGoogle Scholar
  120. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791CrossRefGoogle Scholar
  121. Sengupta U, Nilson AN et al (2016) The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6:42–49CrossRefPubMedPubMedCentralGoogle Scholar
  122. Shirahama T, Cohen AS (1967) High-resolution electron microscopic analysis of the amyloid fibril. J Cell Biol 33(3):679–708CrossRefPubMedPubMedCentralGoogle Scholar
  123. Siddiqi MK, Alam P et al (2017a) Probing the interaction of cephalosporin antibiotic—ceftazidime with human serum albumin: a biophysical investigation. Int J Biol Macromol 105:292–299CrossRefGoogle Scholar
  124. Siddiqi MK, Alam P et al (2017b) Attenuation of amyloid fibrillation in presence of Warfarin: a biophysical investigation. Int J Biol Macromol 95:713–718CrossRefGoogle Scholar
  125. Siddiqi MK, Alam P et al (2017c) Mechanisms of protein aggregation and inhibition. Front Biosci (Elite Ed) 9:1–20CrossRefGoogle Scholar
  126. Siddiqi MK, Alam P et al (2018) Stabilizing proteins to prevent conformational changes required for amyloid fibril formation. J Cell Biochem 120(2):2642–2656Google Scholar
  127. Siddiqi MK, Alam P et al (2018a) Capreomycin inhibits the initiation of amyloid fibrillation and suppresses amyloid induced cell toxicity. Biochim et Biophys Acta (BBA)-Proteins Proteomics 1866(4):549–557CrossRefGoogle Scholar
  128. Siddiqi MK, Alam P et al (2018b) Elucidating the inhibitory potential of designed peptides against amyloid fibrillation and amyloid associated cytotoxicity. Front Chem 6:311CrossRefPubMedPubMedCentralGoogle Scholar
  129. Siddiqi M, Nusrat S et al (2018c) Investigating the site selective binding of busulfan to human serum albumin: biophysical and molecular docking approaches. Int J Biol Macromol 107:1414–1421CrossRefGoogle Scholar
  130. Spires-Jones TL, Attems J et al (2017) Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol 134(2):187–205CrossRefPubMedPubMedCentralGoogle Scholar
  131. Stefani M (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim et Biophys Acta (BBA)-Mol Basis Dis 1739(1):5–25Google Scholar
  132. Stefani M (2010a) Structural polymorphism of amyloid oligomers and fibrils underlies different fibrillization pathways: immunogenicity and cytotoxicity. Curr Protein Pept Sci 11(5):343–354CrossRefGoogle Scholar
  133. Stefani M (2010b) Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. FEBS J 277(22):4602–4613CrossRefGoogle Scholar
  134. Stefani M (2012) Structural features and cytotoxicity of amyloid oligomers: implications in Alzheimer’s disease and other diseases with amyloid deposits. Prog Neurobiol 99(3):226–245CrossRefGoogle Scholar
  135. Stephan A, Laroche S et al (2001) Generation of aggregated β-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J Neurosci 21(15):5703–5714CrossRefPubMedPubMedCentralGoogle Scholar
  136. Stine WB, Snyder SW et al (1996) The nanometer-scale structure of amyloid-β visualized by atomic force microscopy. J Protein Chem 15(2):193–203CrossRefGoogle Scholar
  137. Stoeckli M, Knochenmuss R et al (2006) MALDI MS imaging of amyloid. Methods Enzymol 412:94–106CrossRefGoogle Scholar
  138. Thomas JG, Ayling A et al (1997) Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Appl Biochem Biotechnol 66(3):197–238CrossRefGoogle Scholar
  139. Trovato A, Chiti F et al (2006) Insight into the structure of amyloid fibrils from the analysis of globular proteins. PLoS Comput Biol 2(12):e170CrossRefPubMedPubMedCentralGoogle Scholar
  140. Tucker S, Muller C et al (2015) The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis 43(2):575–588CrossRefGoogle Scholar
  141. Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14(1):96–103CrossRefGoogle Scholar
  142. Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39(1):1–55CrossRefGoogle Scholar
  143. Valastyan JS, Lindquist S (2014) Mechanisms of protein-folding diseases at a glance. Dis Models Mech 7(1):9–14CrossRefGoogle Scholar
  144. Valincius G, Heinrich F et al (2008) Soluble amyloid β-oligomers affect dielectric membrane properties by bilayer insertion and domain formation: implications for cell toxicity. Biophys J 95(10):4845–4861CrossRefPubMedPubMedCentralGoogle Scholar
  145. van den Berg B, Ellis RJ et al (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J 18(24):6927–6933CrossRefPubMedPubMedCentralGoogle Scholar
  146. Vassar R, Bennett BD et al (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741CrossRefGoogle Scholar
  147. Verma M, Vats A et al (2015) Toxic species in amyloid disorders: Oligomers or mature fibrils. Ann Indian Acad Neurol 18(2):138CrossRefPubMedPubMedCentralGoogle Scholar
  148. Vestergaard B, Groenning M et al (2007) A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 5(5):e134CrossRefPubMedPubMedCentralGoogle Scholar
  149. Viet MH, Ngo ST et al (2011) Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity. J Phys Chem B 115(22):7433–7446CrossRefGoogle Scholar
  150. Vilar M, Chou H-T et al (2008) The fold of α-synuclein fibrils. Proc Natl Acad Sci 105(25):8637–8642CrossRefGoogle Scholar
  151. Wadai H, Yamaguchi K-I et al (2005) Stereospecific amyloid-like fibril formation by a peptide fragment of β2-microglobulin. Biochemistry 44(1):157–164CrossRefGoogle Scholar
  152. Wang X, Li Y et al (2014) Effect of strong electric field on the conformational integrity of insulin. J Phys Chem A 118(39):8942–8952CrossRefGoogle Scholar
  153. Welzel AT, Williams AD et al (2012) Human anti-Aβ IgGs target conformational epitopes on synthetic dimer assemblies and the AD brain-derived peptide. PLoS ONE 7(11):e50317CrossRefPubMedPubMedCentralGoogle Scholar
  154. Westermark P (2005) Aspects on human amyloid forms and their fibril polypeptides. FEBS J 272(23):5942–5949CrossRefGoogle Scholar
  155. Winklhofer KF, Tatzelt J et al (2008) The two faces of protein misfolding: gain—and loss—of function in neurodegenerative diseases. EMBO J 27(2):336–349CrossRefPubMedPubMedCentralGoogle Scholar
  156. Wong EW, Sheehan PE et al (1997) Observation of metastable abeta amyloid protofibrils by atomic force microscopy. Science 277:1971–1975CrossRefGoogle Scholar
  157. Woods LA, Radford SE et al (2013) Advances in ion mobility spectrometry: mass spectrometry reveal key insights into amyloid assembly. Biochim et Biophys Acta (BBA)-Proteins Proteomics 1834(6):1257–1268Google Scholar
  158. Xue W-F, Hellewell AL et al (2009) Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem 284(49):34272–34282CrossRefPubMedPubMedCentralGoogle Scholar
  159. Yanagisawa K (2007) Role of gangliosides in Alzheimer’s disease. Biochim et Biophys Acta (BBA)-Biomembr 1768(8): 1943–1951Google Scholar
  160. Zheng W (2001) Neurotoxicology of the brain barrier system: new implications. J Toxicol Clin Toxicol 39(7):711–719CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Khursheed Siddiqi
    • 1
  • Nabeela Majid
    • 1
  • Sadia Malik
    • 1
  • Parvez Alam
    • 1
  • Rizwan Hasan Khan
    • 1
    Email author
  1. 1.Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia

Personalised recommendations